Log in

High Flux Electron Antineutrino Sources Based on Li-8 Isotope. The Possibility to Construct the Compact Variant

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The strong demand to isotopes for creation of the artificial MeV-energy electron antineutrino sources can be satisfied by \({}^{8}\)Li which is characterized by well defined and hard \(\bar{\nu}_{e}\) spectrum. The source can be produced at (\(n\), \(\gamma\))-activation of the starting \({}^{7}\)Li isotope. The availability and presence of large mass of \({}^{7}\)Li allow to construct as \(\bar{\nu}_{e}\)-source on the base of nuclear reactors (in steady state and dynamical mode of operation) as in tandem scheme of proton accelerators with heavy metal target. The accelerator variant is optimized in efficiency of \({}^{8}\)Li generation and in dimension that is exclusively important for investigation of oscillation in problem of sterile neutrino search in case of \(\Delta m^{2}\sim 1\) eV\({}^{2}\) scale. The analysis of \({}^{8}\)Li creation in the lithium blanket-converter allowed to decrease it outer size down to \({\sim}\)70 cm strongly decreasing the escape of neutrons from the source construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. F. Reines and C. L. Cowan, Jr., Phys. Rev. 92, 830 (1953).

    Article  ADS  CAS  Google Scholar 

  2. P. Huber, Phys. Rev. C 84, 024617 (2011).

  3. A. C. Hayes, J. L. Friar, G. T. Garvey, G. Jungman, and G. Jonkmans, Phys. Rev. Lett. 112, 202501 (2014).

  4. V. A. Korovkin, S. A. Kodanev, A. D. Yarichin, A. A. Borovoi, V. I. Kopeikin, L. A. Mikaelyan, and V. D. Sidorenko, Sov. At. Energy 56, 233 (1984).

    Article  Google Scholar 

  5. V. I. Kopeikin, Phys. At. Nucl. 75, 143 (2012).

    Article  CAS  Google Scholar 

  6. A. C. Hayes, J. L. Friar, G. T. Garvey, D. Ibeling, G. Jungman, T. Kawano, and R. W. Mills, Phys. Rev. D 92, 033015 (2015).

  7. V. G. Aleksankin, S. V. Rodichev, P. M. Rubtsov, P. A. Ruzansky, and F. E. Chukreev, Beta and Antineutrino Radiation from Radioactive Nuclei (Energoatomizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  8. A. J. Koning, D. Rochman, J. Sublet, N. Dzysiuk, M. Fleming, and S. van der Marck, Nucl. Data Sheets 155, 1 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Z. Ge, R. Xu, H. Wu, Y. Zhang, G. Chen, Y. **, N. Shu, Y. Chen, X. Tao, Y. Tian, P. Liu, J. Qian, J. Wang, H. Zhang, L. Liu, and X. Huang, EPJ Web Conf. 239, 09001 (2020).

    Article  Google Scholar 

  10. Yu. S. Lyutostansky and V. I. Lyashuk, Sov. At. Energy 69, 696 (1990).

    Article  Google Scholar 

  11. Yu. S. Lyutostansky and V. I. Lyashuk, Nucl. Sci. Eng. 117, 77 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Yu. S. Lutostansky and V. I. Lyashuk, Bull. Russ. Acad. Sci.: Phys. 75, 468 (2011).

    Article  CAS  Google Scholar 

  13. V. I. Lyashuk and Yu. S. Lutostansky, in Proceeding of the 21st International Seminar on Interaction of Neutrons with Nuclei: Fundamental Interactions and Neutrons, Nuclear Structure, Ultracold Neutrons, Related Topics, ISINN-21, Alushta, May 20–25, 2013; Preprint E3-2014-13 (JINR, Dubna, 2014), p. 156.

  14. L. A. Mikaelian, P. E. Spivak, and V. G. Tsinoev, Nucl. Phys. 70, 574 (1965).

    Article  Google Scholar 

  15. E. D. Vorob’ev, L. A. Mikaelyan, A. I. Nazarov, S. M. Feinberg, J. V. Shevelev, I. L. Chihladze, and M. S. Yudkevich, KIAE Preprint No. 2384 (Kurchatov Inst. At. Energy, Moscow, 1974).

    Google Scholar 

  16. Yu. S. Lutostansky and V. I. Lyashuk, Phys. At. Nucl. 63, 1288 (2000).

    Article  CAS  Google Scholar 

  17. V. I. Lyashuk, ar**v: 1609.02934 [physics.ins-det].

  18. V. I. Lyashuk, Res. Phys. 7, 1212 (2017).

    Google Scholar 

  19. V. I. Lyashuk, J. High Energy Phys. 1906, 135 (2019). https://doi.org/10.1007/JHEP06(2019)135

    Article  ADS  Google Scholar 

  20. V. I. Lyashuk, ar**v: 1809.05949 [physics.ins-det].

  21. V. I. Lyashuk, ar**v: 1612.08096v2 [physics.ins-det].

  22. P. Vogel and J. F. Beacom, Phys. Rev. D 60, 053003 (1999).

  23. K. Schreckenbach, G. Colvin, W. Gelletly, and F. von Feilitzsch, Phys. Lett. B 160, 325 (1985).

    Article  ADS  Google Scholar 

  24. http://www.pnpi.spb.ru/en/facilities/reactor-pik.

  25. F. Suekane, T. Iwamoto, H. Ogawa, O. Tajima, and H. Watanabe (for the KamLAND RCNS Group), physics/0404071 [physics.ins-det].

  26. Yu. S. Lutostansky and V. I. Lyashuk, Phys. Part. Nucl. Lett. 2, 226 (2005).

    CAS  Google Scholar 

  27. V. I. Lyashuk and Yu. S. Lutostansky, ar**v: 1503.01280v2 [physics.ins-det].

  28. V. I. Lyashuk and Yu. S. Lutostansky, Bull. Russ. Acad. Sci.: Phys. 79, 431 (2015).

    Article  CAS  Google Scholar 

  29. T. Adam et al. (JUNO Collab.), ar**v: 1508.07166v2 [physics.ins-det].

  30. V. I. Lyashuk and Yu. S. Lutostansky, JETP Lett. 103, 293 (2016).

    Article  ADS  CAS  Google Scholar 

  31. V. I. Lyashuk, Res. Phys. 6, 961 (2016).

    Google Scholar 

  32. V. I. Lyashuk, Part. Nucl. Lett. 14, 465 (2017).

    Article  CAS  Google Scholar 

  33. V. I. Lyashuk, ar**v: 1609.02127 [physics.ins-det].

  34. M. Maltoni and T. Schwetz, Phys. Rev. D 76, 093005 (2007).

  35. J. Kopp, M. Maltoni, and T. Schwetz, Phys. Rev. Lett. 107, 091801 (2011).

  36. J. M. Conrad, C. M. Ignarra, G. Karagiorgi, M. H. Shaevitz, and J. Spitz, Adv. High Energy Phys. 2013, 163897 (2013).

  37. M. Dentler, Á. Hernández-Cabezudo, J. Kopp, P. Machado, M. Maltoni, I. Martinez-Soler, and T. Schwet, J. High Energy Phys. 1808, 10 (2018).

    Article  ADS  Google Scholar 

  38. V. V. Khruschov, S. V. Fomichev, and S. V. Semenov, Phys. At. Nucl. 84, 328 (2021).

    Article  CAS  Google Scholar 

  39. A. Bungau, A. Adelmann, J. R. Alonso, W. Barletta, R. Barlow, L. Bartoszek, L. Calabretta, A. Calanna, D. Campo, J. M. Conrad, Z. Djurcic, Y. Kamyshkov, M. H. Shaevitz, I. Shimizu, T. Smidt, J. Spitz, et al., Phys. Rev. Lett. 109, 141802 (2012).

  40. A. Bungau, R. Barlow, M. Shaevitz, J. Conrad, and J. Spitz, ar**v: 1205.5790v1 [physics.acc-ph].

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Lyashuk.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyashuk, V.I. High Flux Electron Antineutrino Sources Based on Li-8 Isotope. The Possibility to Construct the Compact Variant. Phys. Atom. Nuclei 86, 1402–1410 (2023). https://doi.org/10.1134/S1063778824010344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824010344

Navigation