Log in

Detection of heavy Majorana neutrinos and right-handed bosons

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The SU c (3) ⊗ SU L (2) ⊗ SU R (2) ⊗ U(1) left-right (LR) symmetric model explains the origin of the parity violation in weak interactions and predicts the existence of additional gauge bosons W R and Z′. In addition, heavy right-handed Majorana neutrino states N arise naturally within the LR symmetric model. The states N could be partners of light neutrino states, related to their nonzero masses through the seesaw mechanism. This makes the searches for W R , Z′, and N interesting and important. In the framework of the minimal LR model, we study the possibility to observe signals from N and W R production in pp collisions after three years of running at low LHC luminosity. We show that their decay signals can be identified with a small background, especially in the case of same-sign leptons in the final state. For the integral LHC luminosity of L t = 30 fb−1, the 5σ discovery of W R boson and heavy Majorana neutrinos N e with masses \(M_{W_R } \) up to 4 TeV and \(M_{N_e } \) up to 2.4 TeV, respectively, is found to be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Krasnikov and V. A. Matveev, Phys. Usp. 47, 643 (2004).

    Article  Google Scholar 

  2. J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 366 (1975); G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975).

    Article  ADS  Google Scholar 

  3. M. Gell-Mann, P. Ramon, and R. Slansky, in Supergravity, Ed. by P. van Niewenhuizen and D. Freedman (North-Holland, Amsterdam, 1979); T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number on the Universe, KEK, Tsukuba, 1979, Ed. by O. Sawaga and A. Sugamoto; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

    Google Scholar 

  4. Carlo Giunti, hep-ph/0310238.

  5. Ho Tso-Hsiu, Ching Cheng-rui, and Tao Zhi-jian, Phys. Rev. D 42, 2265 (1990).

    Article  ADS  Google Scholar 

  6. A. Data, M. Guchait, and D. P. Roy, Phys. Rev. D 47, 961 (1993).

    Article  ADS  Google Scholar 

  7. O. Panella, M. Cannoni, C. Carimalo, and Y. N. Srivastava, Phys. Rev. D 65, 035005 (2002).

    Google Scholar 

  8. B. Mukhopadhyaya, Phys. Rev. D 49, 1350 (1994); hep-ph/9211240.

    Article  ADS  Google Scholar 

  9. A. Ferrari et al., Phys. Rev. D 62, 013001 (2000).

  10. J. Polak and M. Zralek, Nucl. Phys. B 363, 385 (1991); A. Pilaftsis, Phys. Rev. D 52, 459 (1995); M. Czakon, J. Gluza, and M. Zralek, Phys. Lett. B 458, 355 (1999).

    Article  ADS  Google Scholar 

  11. Review of Particle Physics (K. Hagivara et al.), Phys. Rev. D 66, 1 (2002).

    Google Scholar 

  12. G. Bell, M. Bander, and A. Soni, Phys. Rev. Lett. 48, 848 (1982); G. Barenboim, J. Bernabeu, J. Prades, and M. Raidal, Phys. Rev. D 55, 4213 (1997).

    Article  ADS  Google Scholar 

  13. P. Langacker and S. Uma Sankar, Phys. Rev. D 40, 1569 (1989).

    Article  ADS  Google Scholar 

  14. S. Abachi et al. (D0 Collab.), Phys. Rev. Lett. 76, 3271 (1996).

    Article  ADS  Google Scholar 

  15. T. Rizzo, Phys. Rev. D 50, 325 (1994).

    Article  ADS  Google Scholar 

  16. E. Nardi, E. Roulet, and D. Tommasini, Phys. Lett. B 344, 225 (1995); J. Gluza et al., Phys. Lett. B 407, 45 (1997); A. Pilaftsis, Int. J. Mod. Phys. A 14, 1811 (1999).

    Article  ADS  Google Scholar 

  17. G. Barenboim and M. Raidal, Nucl. Phys. B 484, 63 (1997), and references therein.

    Article  ADS  Google Scholar 

  18. The Compact Muon Solenoid, Technical Proposal, CERN/LHCC 94-38 (1994).

  19. The CMS ECAL Technical Design Report, CERN/LHCC 97-33 (1997).

  20. The CMS HCAL Technical Design Report, CERN/LHCC 97-33 (1997).

  21. The CMS MUON Technical Design Report, CERN/LHCC 97-33 (1997).

  22. T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994); 39, 347 (1986); H. U. Bengtsson and T. Sjöstrand, Comput. Phys. Commun. 43, 367 (1987).

    Article  ADS  Google Scholar 

  23. J. Botts et al., Phys. Lett. B 304, 159 (1993).

    Article  ADS  Google Scholar 

  24. S. Abdullin, A. Khanov, and N. Stepanov, CMSJET 3.2; CMSJET 3.5; CMS TN/94-180.

  25. L3 Collab. (P. Achard et al.), Phys. Lett. B 517, 67 (2001).

    Article  ADS  Google Scholar 

  26. S. R. Slabospitsky and L. Sonnenschein, Comput. Phys. Comm. 148, 87 (2002); hep-ph/0201292.

    Article  ADS  Google Scholar 

  27. S. I. Bityukov and N. V. Krasnikov, CMS CR 2002/05; hep-ph/0204326; Mod. Phys. Lett. A 13, 3235 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gninenko, S.N., Kirsanov, M.M., Krasnikov, N.V. et al. Detection of heavy Majorana neutrinos and right-handed bosons. Phys. Atom. Nuclei 70, 441–449 (2007). https://doi.org/10.1134/S1063778807030039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807030039

PACS numbers

Navigation