Log in

Gravitational Effects in Electrostatic Storage Rings and the Search for the Electric Dipole Moments of Charged Particles

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Spurious signals induced by curved spacetime in the gravity field of the rotating Earth in experiments on the search for the electric dipole moment of charged particles manifested by the spin rotation in pure electrostatic storage rings have been analyzed with the focus on effects of Earth’s rotation. It has been found that the rotation of the plane of an electrostatic storage ring together with the Earth generates a nonzero magnetic field. Locally in the storage ring, the spin precession frequency linear in Earth’s rotation is much higher than the frequency of the spin precession caused by the electric dipole moments. It has been argued that the integral spurious spin rotation for a particle on an ideal orbit is strongly suppressed because the contribution from Earth’s rotation is sign-alternating along the storage ring. A background signal quadratic in Earth’s rotation is finite but small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. D. Sakharov, JETP Lett. 5, 24 (1967);

    ADS  Google Scholar 

  2. Sov. Phys. Usp. 34, 392 (1991).

  3. W. Bernreuther, Lect. Notes Phys. 591, 237 (2002).

  4. T. Chupp, P. Fierlinger, M. Ramsey-Musolf, and J. Singh, Rev. Mod. Phys. 91, 015001 (2019).

    Article  ADS  Google Scholar 

  5. L. B. Okun’, Sov. Phys. Usp. 9, 574 (1966).

    Article  ADS  Google Scholar 

  6. I. B. Khriplovich and S. K. Lamoreaux, CP Violation without Strangeness (Springer, Berlin, 1997).

    Book  Google Scholar 

  7. F. Rathmann and N. Nikolaev, Electric dipole moment searches using storage rings, POS SPIN2018 (2019) 0004; https://doi.org/10.22323/1/346.0004

  8. F. Abusaif et al. (CPEDM Collab.), ar**v:1812.08535 [physics.acc-ph].

  9. V. Anastassopoulos et al. (srEDM Collab.), Rev. Sci. Instrum. 87, 115116 (2016).

    Article  ADS  Google Scholar 

  10. Y. Orlov, E. Flanagan, and Y. Semertzidis, Phys. Lett. A 376, 2822 (2012).

    Article  ADS  Google Scholar 

  11. Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Phys. Rev. D 94, 044019 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Morishima, T. Futamase, and H. M. Shimizu, Prog. Theor. Exp. Phys. 2018, 089201 (2018).

    Article  Google Scholar 

  13. J. P. Miller and B. L. Roberts, ar**v:1805.01944 [hep-ph].

  14. A. Laszlo and Z. Zimboras, Class. Quant. Grav. 35, 175003 (2018).

    Article  ADS  Google Scholar 

  15. N. Nikolaev, F. Rathmann, A. Saleev, and A. Silenko (for the JEDI Collaboration), PoS SPIN2018 (2019) 089; https://doi.org/10.22323/1.346.0089

  16. J. Lense and H. Thirring, Phys. Z. 19, 156 (1918).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

  18. K. A. Dunn and J. G. Williams, Astron. J. 108, 711 (1994).

    Article  Google Scholar 

  19. I. B. Khriplovich and A. A. Pomeransky, J. Exp. Theor. Phys. 86, 839 (1998).

    Article  ADS  Google Scholar 

  20. A. A. Pomeransky, R. A. Senkov, and I. B. Khriplovich, Phys. Usp. 43, 1055 (2000).

    Article  ADS  Google Scholar 

  21. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Dover, New York, 2005).

    MATH  Google Scholar 

  22. A. J. Silenko and O. V. Teryaev, Phys. Rev. D 71, 064016 (2005).

    Article  ADS  Google Scholar 

  23. D. F. Nelson, A. A. Schupp, R. W. Pidd, and H. R. Crane, Phys. Rev. Lett. 2, 492 (1959).

    Article  ADS  Google Scholar 

  24. T. Fukuyama and A. J. Silenko, Int. J. Mod. Phys. A 28, 1350147 (2013).

    Article  ADS  Google Scholar 

  25. J. Frenkel, Z. Phys. 37, 243 (1926).

    Article  ADS  Google Scholar 

  26. L. H. Thomas, Nature (London, U.K.) 117, 514 (1926).

    Article  ADS  Google Scholar 

  27. V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lett. 2, 435 (1959).

    Article  ADS  Google Scholar 

  28. W. de Sitter, Mon. Not. R. Astron. Soc. 77, 155 (1916).

    Article  ADS  Google Scholar 

  29. A. Saleev et al. (JEDI Collab.), Phys. Rev. Accel. Beams 20, 072801 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.F. Andreev and A.V. Byalko for invitation to publish this article in this issue of the Journal of Experimental and Theoretical Physics devoted to the 100th anniversary of Isaak Markovich Khalatnikov, to Isaak Markovich Khalatnikov for honor to work since the mid-1970s at the unique Landau Institute for Theoretical Physics founded by him, and to S.S. Vergeles, A.Ya. Mal’tsev, and A.A. Starobinsky for stimulating discussions.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state program no. 0033-2019-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Vergeles.

Additional information

Contribution for the JETP special issue in honor of I. M. Khalatnikov’s 100th anniversary

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergeles, S.N., Nikolaev, N.N. Gravitational Effects in Electrostatic Storage Rings and the Search for the Electric Dipole Moments of Charged Particles. J. Exp. Theor. Phys. 129, 541–552 (2019). https://doi.org/10.1134/S1063776119100108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119100108

Navigation