Log in

Mineralogical Crystallography: VI. Sulfides

  • STRUCTURE OF INORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

General characteristics of the crystal-chemical features of the sulfide class of minerals, including the genesis, chemical bonding, different approaches to the classification, etc., are given. The structures of the main representatives of tetrahedral sulfides, disulfides, cluster sulfides, sulfides of elements with incomplete valence shells, and sulfosalts are considered. Mineralogically possible iron sulfides in the Earth’s core are presented. It is noted that the geophysical interest in sulfide Fe5S2 is related to its possible presence in the core of not only the Earth but also in the other planets in the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.

REFERENCES

  1. Bazhanova, Z.G, Roizen, V.V., and Oganov, A.R, Behavior of the Fe–S system at high pressures and the Earth’s core composition, 2017, Usp. Fiz. Nauk, vol. 187, pp. 1105–1113.

    Article  Google Scholar 

  2. Belov, N.V., Ocherki po strukturnoi mineralogii (Essays on Structural Mineralogy), Moscow: Nedra, 1976.

  3. Biagioni, C., Bindi, L., and Moëlo, Y., Another step toward the solution of the real structure of zinkenite, Z. Kristallogr. Cryst. Mater., 2018, vol. 233, nos. 3–4, pp. 269–277.

    Article  CAS  Google Scholar 

  4. Bindi, L. and Menchetti, S., Garavellite, FeSbBiS4, from the Caspari mine, North Rhine-Westphalia, Germany: composition, physical properties, and determination of the crystal structure, Mineral. Petrol., 2005, vol. 85, nos. 3–4, pp. 131–139.

    Article  CAS  ADS  Google Scholar 

  5. Bindi, L., Petrıcek, V., Biagioni, C., et al., Could incommensurability in sulfosalts be more common than thought? The case of meneghinite, CuPb13Sb7S24, Acta Crystallogr. B, 2017, vol. 73, pp. 369–376.

    Article  CAS  ADS  Google Scholar 

  6. Bragg, W. and Claringbull, G.F., Crystal Structure of Minerals, New York: Cornell Univ. Press, 1965.

    Google Scholar 

  7. Du, B., Zhang, R., Chen, K., et al., The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2, J. Mater. Chem. A, 2017, vol. 5, no. 7, pp. 3249–3259.

    Article  CAS  Google Scholar 

  8. Ehm, L., Knorr, K., Dera, P., et al., Pressure-induced structural phase transition in the IV–VI semiconductor SnS, J. Phys.: Condens. Matter, 2004, vol. 16. no. 21, pp. 3545–3554.

    CAS  ADS  Google Scholar 

  9. Elliot, A.D., Structure of pyrrhotite 5C (Fe9S10), Acta Crystallogr., Sect. B: Struct. Sci., 2010, vol. 66, no. 3, pp. 271–279. https://doi.org/10.1107/s0108768110011845

    Article  CAS  ADS  Google Scholar 

  10. Fei, Y., Li, J., Bertka, C.M., and Prewitt, Ch.T., Structure type and bulk modulus of Fe3S, a new iron-sulfur compound, Am. Mineral., 2000, vol. 85, pp. 1830–1833.

    Article  CAS  ADS  Google Scholar 

  11. Gibbs, G.V., Wallace, A.F., Zallen, R., et al., Bond paths and van der Waals interactions in orpiment, As2S3, J. Phys. Chem. A, 2010, vol. 114, no. 23, pp. 6550–6557.

    Article  CAS  PubMed  Google Scholar 

  12. Jeong, H.Y., Lee, J. H., and Hayes, K.F., Characterization of synthetic nanocrystalline mackinawite: Crystal structure, particle size, and specific surface area, Geochim. Cosmochim. Acta, 2008, vol. 72, no. 2, pp. 493–505.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Krivovichev, V.G., Mineralogicheskii slovar’ (Mineralogy Dictionary), St. Petersburg: Izd-vo SPbGU, 2008.

  14. Lyubutin, I.S., Lin, C.-R., Starchikov, S. S., et al., Synthesis, structural and electronic properties of monodispersed self-organized single crystalline nanobricks of isocubanite CuFe2S3, J. Solid State Chem., 2015, vol. 221, pp. 184–190.

    Article  CAS  ADS  Google Scholar 

  15. Makovicky, E., Rod-based sulphosalt structures derived from the SnS and PbS archetypes, Eur. J. Mineral., 1993, vol. 5, no. 3, pp. 545–591.

    Article  CAS  ADS  Google Scholar 

  16. Makovicky, E., Modular crystal chemistry of thallium sulfosalts, Minerals, 2018, vol. 8, no. 11, p. 478. https://doi.org/10.3390/min8110478

  17. Makovicky, E., Karanovic, L., Poleti, D., Balic-Zunic, T., and Paar, W. H., Crystal structure of copper-rich unsubstituted tennantite, Cu12.5As4S13, Can. Mineral., 2005, vol. 43, no. 2, pp. 679–688. https://doi.org/10.2113/gscanmin.43.2.679

    Article  CAS  Google Scholar 

  18. Owusu, M., Jawad, H., Lundstrőm, T., and Rundqvist, S., Crystallographic studies of Cr3P and the solid solution of hydrogen in Zn3P, Phys. Scr., 1972, vol. 6, pp. 65–70.

    Article  ADS  Google Scholar 

  19. Povarennykh, A.S., Kristallokhimicheskaya klassifikatsiya mineral’nykh vidov (Crystallochemical Classification of Mineral Species), Kiev: Naukova Dumka, 1966.

  20. Ross, V., Geochemistry, crystal structure and mineralogy of the sulfides, Econ. Geol., 1957, vol. 52, pp. 755–774.

    Article  CAS  Google Scholar 

  21. Schmøkel, M.S., Bjerg, L., Cenedese, S., et al., Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: A combined experimental and theoretical electron density study, Chem. Sci., 2014, vol. 5, no. 4, pp. 1408–1421.

    Article  Google Scholar 

  22. Schultz, P., Nietschke, F., Wagner, G., et al., The crystal structures of Pb5 Sb4 S11 (Boulangerite)–A phase transition explains seemingly contradictory structure models. Z. Anorg. Allg. Chem., 2017, vol. 643, no. 21, pp. 1531–1542.

    Article  CAS  Google Scholar 

  23. Sherman, D.M., The composition of the Earth’s core: Constraints on S and Si vs. temperature, Earth Planet. Sci. Lett., 1997, vol. 153, nos. 3–4, pp. 149–155.

    Article  CAS  ADS  Google Scholar 

  24. Shorikov, A.O., Roizen, V.V., Oganov, A.R., and Anisimov, V.I., Role of temperature and Coulomb correlation in the stabilization of the CsCl-type phase in FeS under pressure, Phys. Rev. B, 2018, vol. 98, no. 9, 094112.

  25. Shpotyuk, O., Baláž, P., Bujňáková, Z., et al., Mechanochemically driven amorphization of nanostructurized arsenicals, the case of β-As4S4, J. Mater. Sci., 2018, vol. 53, no. 19, pp. 13464–13476.

    Article  CAS  ADS  Google Scholar 

  26. Silva, J.C. M., De Abreu, H.A., and Duarte, H.A., Electronic and structural properties of bulk arsenopyrite and its cleavage surfaces–a DFT study, R. Soc. Chem. Adv., 2015, vol. 5, no. 3, pp. 2013–2023.

    CAS  Google Scholar 

  27. Smitiukh, O.V., Marchuk, O.V., Kogut, Y.M., et al., Effect of rare-earth do** on the structural and optical properties of the Ag3AsS3 crystals, Opt. Quantum Electron., 2022, vol. 54, no. 4, p. 224. https://doi.org/10.1007/s11082-022-03542-w

    Article  CAS  Google Scholar 

  28. Strunz, H. and Nickel, E., Mineralogical Tables. E, Stuttgart: Schweizerbart’sche Verlagsbuchhandlung, 2001, p. 870.

    Google Scholar 

  29. Urusov, V.S. and Eremin, N.N., Kristallokhimiya. Kratkii kurs: Uchebnik (Crystal Chemistry: Short Course), Moscow: Izd-vo MGU, 2010.

  30. Vaughan, D.J. and Craig, J.R., Mineral Chemistry of Metal Sulfides, Cambridge, Cambridge Univ. Press, 1978.

    Google Scholar 

  31. Vaughan, D.J. and Corkhill, C.L., Mineralogy of sulfides, Elements, 2017, vol. 13, no. 2, pp. 81–87. https://doi.org/10.2113/gselements.13.2.81

    Article  CAS  ADS  Google Scholar 

  32. Zurkowski, C.C. and Fei, Y., Mineralogy of planetary cores, in: Celebrating the International Year of Mineralogy: Progress and Landmark Discoveries of the Last Decades, Bindi, L. and Cruciani, G., Ed., Springer, 2023, Ch. 9, pp. 207–248.

    Google Scholar 

  33. Zurkowski, C.C., Lavina, B., Case, A., et al., Fe5S2 identified as a host of sulfur in Earth and planetary cores, Earth Planet Sci. Lett., 2022, vol. 593, 117650.

Download references

Funding

The study was financially supported by the Russian Science Foundation (project no. 24-17-00050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Pushcharovsky.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by T. Safonova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushcharovsky, D.Y. Mineralogical Crystallography: VI. Sulfides. Crystallogr. Rep. 68 (Suppl 1), S105–S128 (2023). https://doi.org/10.1134/S106377452360151X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377452360151X

Key words:

Navigation