Log in

Computer Simulation of the Complex Interface of a Solid-Oxide Fuel Cell: Three-Layer Zr0.8Sc0.2O1.9|Ce0.9Gd0.1O1.95|Pr2CuO4 Heterosystem

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A three-layer Zr0.8Sc0.2O1.9/Ce0.9Gd0.1O1.95/Pr2CuO4 heterosystem has been studied by the molecular dynamics method in a computational cell ∼110 × 110 × 470 Å3 in size. It is shown that the main crystallographic characteristics are retained for all layers. It follows from the analysis of pair correlation functions that all oxide phases in the heterosystem exhibit oxygen sublattice disorder, which is especially pronounced in zirconium and cerium oxides. The calculated values of layer-by-layer oxygen diffusion coefficients, as well as the diffusion activation energies, are compared with the data of both direct physical and computer experiments. Individual paths of oxygen anion jumps through the Zr0.8Sc0.2O1.9/Ce0.9Gd0.1O1.95 and Ce0.9Gd0.1O1.95/Pr2CuO4 interfaces are traced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. O’Hayre, S. W. Cha, W. G. Collela, and F. B. Prinz, Fuel Cell Fundamentals (Wiley, New Jersey, USA, 2016).

    Book  Google Scholar 

  2. Y. Zheng, J. Wang, B. Yu, et al., Chem. Soc. Rev. 46, 1427 (2017). https://doi.org/10.1039/C6CS00403B

    Article  Google Scholar 

  3. K. Kendall, Portable Early Market SOFCs High-Temperature Solid Oxide Fuel Cells for the 21st Century. Fundamentals, Design, and Applications, Ed. by K. Kendall and M. Kendall (Elsevier, Academic Press, 2016), p. 329.

    Google Scholar 

  4. R. Maric and G. Mirshekari, Solid Oxide Fuel Cells: From Fundamental Principles to Complete Systems (Electrochemical Energy Storage and Conversion) (CRC Press, 2020).

    Book  Google Scholar 

  5. J. Zhang, C. Lenser, N. H. Menzler, and O. Guillon, Solid State Ionics 344, 115138 (2020). https://doi.org/10.1016/j.ssi.2019.115138

  6. Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology, Ed. by M. Boaro and A. S. Arico (Springer, 2017).

    Google Scholar 

  7. Intermediate Temperature Solid Oxide Fuel Cells, Ed. by G. Kaur (Elsevier, 2019).

    Google Scholar 

  8. G. Cai, Y. Gu, L. Ge, et al., Ceram. Int. 43, 8944 (2017).https://doi.org/10.1016/j.ceramint.2017.04.033

    Article  Google Scholar 

  9. Z. Zakaria and S. K. Kamarudin, Int. J. Energy Res. 45, 4871 (2021).https://doi.org/10.1002/er.6206

    Article  Google Scholar 

  10. G. Y. Cho, Y. H. Lee, S. W. Hong, et al., Int. J. Hydrogen Energy 40, 15704 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.124

    Article  Google Scholar 

  11. M. Hirano, T. Oda, K. Uai, et al., J. Am. Ceram. Soc. 85, 1336 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00275.x

    Article  Google Scholar 

  12. A. J. Jacobson, Chem. Mater. 22, 660 (2010). https://doi.org/10.1021/cm902640j

    Article  Google Scholar 

  13. P. Ding, W. Li, H. Zhao, et al., J. Phys. Mater. 4, 4022002 (2021).

  14. A. Niemczyk and K. Świerczek, E3S Web Conf. 108, 01019 (2019).

  15. M. Z. Ahmad, S. H. Ahmad, R. S. Chen, et al., Int. J. Hydrogen Energy 47, 1103 (2021). https://doi.org/10.1016/j.ijhydene. 2021.10.094

  16. E. Fabbri, D. Pergolesi, and E. Traversa, Sci. Technol. Adv. Mater. 11, 054503 (2010). https://doi.org/10.1088/1468-6996/11/5/054503

  17. C. M. Harrison, P. R. Slater, and R. Steinberger-Wilckens, Solid State Ionics 354, 115410 (2020). https://doi.org/10.1016/j.ssi.2020.115410

  18. A. Tarancón, A. Morata, G. Dezanneau, et al., J. Power Sources 174, 255 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.077

    Article  ADS  Google Scholar 

  19. A. Tarancón, M. Burriel, J. Santiso, et al., J. Mater. Chem. 20, 3799 (2010). https://doi.org/10.1039/B922430K

    Article  Google Scholar 

  20. N. A. Baharuddin, A. Muchtar, and M. R. Somalu, Int. J. Hydrogen Energy 42, 9149 (2017). https://doi.org/10.1016/j.ijhydene.2016.04.097

    Article  Google Scholar 

  21. X. Fu, M. Liu, X. Meng, et al., Ionics 26, 7 (2020). https://doi.org/10.1007/s11581-019-03314-9

    Article  Google Scholar 

  22. Z. Shijie, L. Na, S. Li**, et al., J. Alloys Compd. 895, 162548 (2022). https://doi.org/10.1016/j.jallcom.2021.162548

  23. M. S. Kaluzhskikh, S. M. Kazakov, G. N. Mazo, et al., J. Solid State Chem. 184, 698 (2011). https://doi.org/10.1016/j.jssc.2011.01.035

    Article  ADS  Google Scholar 

  24. K. Zheng, A. Gorzkowska-Sobas, and K. Świerczek, Mat. Res. Bull. 47, 4089 (2012). https://doi.org/10.1016/j.materresbull.2012.08.072

    Article  Google Scholar 

  25. C. Sun, Q. Li, L. Sun, et al., Mater. Res. Bull. 53, 65 (2014). https://doi.org/10.1016/j.materresbull.2014.01.040

    Article  Google Scholar 

  26. N. V. Lyskov, M. S. Kaluzhskikh, L. S. Leonova, et al., Int. J. Hydrogen Energy 37, 18357 (2012). https://doi.org/10.1016/j.ijhydene.2012.09.099

    Article  Google Scholar 

  27. L. M. Kolchina, N. V. Lyskov, A. N. Kuznetsov, et al., RSC Adv. 6, 101029 (2016). https://doi.org/10.1039/C6RA21970E

  28. N. V. Lyskov, L. M. Kolchina, M. Z. Galin, et al., Solid State Ionics 319, 156 (2018). https://doi.org/10.1016/j.ssi.2018.02.017

    Article  Google Scholar 

  29. L. M. Kolchina, N. V. Lyskov, D. Petukhov, et al., J. Alloys Compd. 605, 89 (2014). https://doi.org/10.1016/j.jallcom.2014.03.179

    Article  Google Scholar 

  30. K. Mukherjee, Y. Hayamizu, C. S. Kim, et al., ACS Appl. Mater. Interfaces 8, 34295 (2016). https://doi.org/10.1021/acsami 6b08977

  31. T. Zhao, L.-P. Sun, Q. Li, et al., J. Electrochem. Energy Conv. Storage, ASME 13, 011006 (2016). https://doi.org/10.1115/1.4033526

  32. S. Zhao, N. Li, L. Sun, et al., Int. J. Hydrogen Energy 47, 6227 (2021). https://doi.org/10.1016/j.ijhydene.2021.11.250

    Article  Google Scholar 

  33. T. Matsui, S. Li, H. Muroyama, et al., Solid State Ionics 300, 135 (2017). https://doi.org/10.1016/j.ssi.2016.12.014

    Article  Google Scholar 

  34. T. Somekawa, Y. Matsuzaki, Y. Tachikawa, et al., Solid State Ionics 282, 1 (2015). https://doi.org/10.1016/j.ssi.2015.09.005

    Article  Google Scholar 

  35. F. Wang, M. E. Brito, K. Yamaji, et al., Solid State Ionics 262, 454 (2014). https://doi.org/10.1016/j.ssi.2014.04.002

    Article  Google Scholar 

  36. H. Xu, K. Cheng, M. Chen, et al., J. Power Sources 441, 227152 (2019). https://doi.org/10.1016/j.jpowsour.2019.227152

  37. C. Kim, H. Park, I. Jang, et al., J. Power Sources 378, 404 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.065

    Article  ADS  Google Scholar 

  38. M. Z. Galin, A. K. Ivanov-Shitz, and G. N. Mazo, Crystallogr. Rep. 63 (1), 104 (2018). https://doi.org/10.1134/S1063774518010078

    Article  ADS  Google Scholar 

  39. A. K. Ivanov-Shitz and G. N. Mazo, Crystallogr. Rep. 63, 1 (2018). https://doi.org/10.1134/S106377451801008X

    Article  ADS  Google Scholar 

  40. A. K. Ivanov-Shitz, I. Yu. Gotlib, M. Z. Galin, et al., Crystallogr. Rep. 64, 407 (2019). https://doi.org/10.1134/S1063774519030118

    Article  ADS  Google Scholar 

  41. G. N. Mazo, Yu. A. Mamaev, M. Z. Galin, et al., Neorg. Mater. 47, 1337 (2011).

    Article  Google Scholar 

  42. W. Smith, I. T. Todorov, and M. Leslie, Z. Kristallogr. 220, 563 (2005). https://doi.org/10.1524/zkri.220.5.563.65076

    Article  Google Scholar 

  43. T. Sakai, J. Hyodo, M. Ogushi, et al., Solid State Ionics 301, 156 (2017). https://doi.org/10.1016/j.ssi.2017.02.002

    Article  Google Scholar 

  44. Z. Q. Yu, R. Devanathan, W. Jiang, et al., Solid State Ionics 181, 367 (2010). https://doi.org/10.1016/j.ssi.2010.01.024

    Article  Google Scholar 

  45. N. Kumari, U. Anjum, M. Ali Haider, et al., MRS Adv. 4, 783 (2019). https://doi.org/10.1557/adv.2019.165

    Article  Google Scholar 

  46. A. K. Ivanov-Schitz, G. N. Mazo, E. S. Povolotskaya, et al., Solid State Ionics 173, 103 (2004). https://doi.org/10.1016/j.ssi.2004.07.059

    Article  Google Scholar 

  47. A. K. Ivanov-Shitz, G. N. Mazo, E. S. Povolotskaya, et al., Crystallogr. Rep. 50, 452 (2005).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research, project no. 17-03-00650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ivanov-Schitz.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotlib, I.Y., Ivanov-Schitz, A.K. & Murin, I.V. Computer Simulation of the Complex Interface of a Solid-Oxide Fuel Cell: Three-Layer Zr0.8Sc0.2O1.9|Ce0.9Gd0.1O1.95|Pr2CuO4 Heterosystem. Crystallogr. Rep. 67, 937–943 (2022). https://doi.org/10.1134/S1063774522060086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522060086

Navigation