Log in

Fine Frequency Structure of Interstellar Scintillation Pattern in Radio Emission of the PSR B1133+16 at 111 MHz

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The B1133+16 pulsar was observed at a frequency of 111 MHz with the BSA radio telescope of the Pushchino Radio Astronomy Observatory from October 2022 to March 2023. Observations were conducted twice a week for two consecutive days. In total, 38 measurements of the scintillation parameters were carried out with a high frequency resolution (up to 65 Hz). We used continuous signal recording in the frequency band of 2.5 MHz. The signal was reconstructed using the coherent dedispersion method. The pulsar’s dynamic spectra (DSP) were analyzed using the two-dimensional autocorrelation function (2DACF). The fine frequency structure of the pulsar’s scintillation was investigated both through the analysis of time and frequency sections of 2DACF from DSP and through the spectra of individual pulses. The analysis of the frequency sections of the 2DACF showed that the true form of diffractive frequency distortions can be represented by a generalized exponential function with a characteristic frequency width of 1.2 kHz and an index of 0.57. Comparison of scintillation parameters separately for two components of the average profile showed that they are identical for both components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. B. J. Rickett, Ann. Rev. Astron. Astrophys. 28, 561 (1990).

    Article  ADS  Google Scholar 

  2. P. A. G. Scheuer, Nature (London, U.K.) 218 (5145), 920 (1968).

    Article  ADS  Google Scholar 

  3. B. J. Rickett, Nature (London, U.K.) 221 (5176), 158 (1969).

    Article  ADS  Google Scholar 

  4. B. J. Rickett, W. A. Coles, and G. Bourgois, Astron. Astrophys. 134, 390 (1984).

    ADS  Google Scholar 

  5. B. J. Rickett, Ann. Rev. Astron. Astrophys. 15, 479 (1977).

    Article  ADS  Google Scholar 

  6. J. W. Armstrong, B. J. Rickett, and S. R. Spangler, Astrophys. J. 443, 209 (1995).

    Article  ADS  Google Scholar 

  7. V. I. Shishov and T. V. Smirnova, Astron. Rep. 46, 731 (2002).

    Article  ADS  Google Scholar 

  8. V. I. Shishov, T. V. Smirnova, W. Sieber, V. M. Malofeev, et al., Astron. Astrophys. 404, 557 (2003).

    Article  ADS  Google Scholar 

  9. T. V. Smirnova, V. I. Shishov, W. Sieber, D. R. Stinebring, et al., Astron. Astrophys. 455, 195 (2006).

    Article  ADS  Google Scholar 

  10. W. Lewandowski, M. Kowalińska, and J. Kijak, Mon. Not. R. Astron. Soc. 449, 1570 (2015).

    Article  ADS  Google Scholar 

  11. R. W. Romani, R. Narayan, and R. Blandford, Mon. Not. R. Astron. Soc. 220, 19 (1986).

    Article  ADS  Google Scholar 

  12. D. C. Backer, Astron. Astrophys. 43, 395 (1975).

    ADS  Google Scholar 

  13. J. M. Cordes, J. M. Weisberg, and V. Boriakoff, Astrophys. J. 268, 370 (1983).

    Article  ADS  Google Scholar 

  14. A. Wolszczan and J. M. Cordes, Astrophys. J. Lett. 320, L35 (1987).

    Article  ADS  Google Scholar 

  15. Y. Gupta, N. D. R. Bhat, and A. P. Rao, Astrophys. J. 520, 173 (1999).

    Article  ADS  Google Scholar 

  16. A. T. Deller, W. M. Goss, W. F. Brisken, S. Chatterjee, et al., Astrophys. J. 875, 100 (2019).

    Article  ADS  Google Scholar 

  17. R. N. Manchester, G. B. Hobbs, A. Teoh, and N. Hobbs, Astron. J. 129, 1993 (2005).

    Article  ADS  Google Scholar 

  18. T. H. Hankins and B. J. Rickett, in Methods in Computational Physics: Advances in Research and Applications, Vol. 14: Radio Astronomy, Ed. by B. Aldu (Academic, New York, 1975), p. 55.

  19. I. A. Girin, S. F. Likhachev, A. S. Andrianov, M. S. Burgin, M. V. Popov, A. G. Rudnitskiy, V. A. Soglasnov, and V. A. Zuga, Astron. Comput. 45, 100754 (2023); ar**v: 2303.17280 [astro-ph.IM].

  20. R. N. Bracewell, The Fourier Transform and Its Applications, Part of McGraw-Hill Series on Electrical Engineering, Networks and Systems (McGraw-Hill, New York, 1986).

  21. J. M. Cordes, Astrophys. J. 311, 183 (1986).

    Article  ADS  Google Scholar 

  22. J. M. Cordes, J. M. Weisberg, and V. Boriakoff, Astrophys. J. 288, 221 (1985).

    Article  ADS  Google Scholar 

  23. N. D. R. Bhat, A. P. Rao, and Y. Gupta, Astrophys. J. Suppl. Ser. 121, 483 (1999).

    Article  ADS  Google Scholar 

  24. N. Bartel, M. S. Burgin, E. N. Fadeev, M. V. Popov, N. Ronaghikhameneh, T. V. Smirnova, and V. A. Soglasnov, Astrophys. J. 941, 112 (2022).

    Article  ADS  Google Scholar 

  25. M. V. Popov, Astron. Rep. 66, 1311 (2022).

    Article  ADS  Google Scholar 

  26. M. V. Popov and T. V. Smirnova, Astron. Rep. 65, 1129 (2021).

    Article  ADS  Google Scholar 

  27. W. Feller, An Introduction to Probability Theory and Its Applications, 2nd ed. (New York, Wiley, 1971), Vol. 2.

    Google Scholar 

  28. M. V. Popov, N. Bartel, A. S. Andrianov, M. S. Burgin, et al., ar**v: 2302.13326 [astro-ph.GA] (2023).

  29. F. A. Jenet and S. B. Anderson, Publ. Astron. Soc. Pacif. 110 (754), 1467 (1998).

    Article  ADS  Google Scholar 

  30. M. V. Popov, N. Bartel, M. S. Burgin, C. R. Gwinn, T. V. Smirnova, and V. A. Soglasnov, Astrophys. J. 888, 57 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Popov or T. V. Smirnova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, M.V., Smirnova, T.V. Fine Frequency Structure of Interstellar Scintillation Pattern in Radio Emission of the PSR B1133+16 at 111 MHz. Astron. Rep. 68, 168–182 (2024). https://doi.org/10.1134/S1063772924700173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772924700173

Keywords:

Navigation