Log in

Features of Dynamics and Instability of Plasma Jets Expanding into an External Magnetic Field in Laboratory Experiments with Compact Coaxial Plasma Generators on a Large-Scale “Krot” Stand

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Structural instabilities that develop during pulsed injection of dense plasma jets into vacuum in the presence of an external quasi-homogeneous magnetic field are studied by high-speed photography using ICCD cameras. The experiments are carried out in the chamber of the “Krot” stand, which has record-breaking dimensions in its class of installations (diameter—3 m, length of the working section—10 m), and makes it possible to study plasma dynamics by various diagnostic methods at scales of more than 1 m both along the magnetic field and in the direction transverse to the magnetic field. During injection along the magnetic field, a transverse collimation of the flow of ionized matter and the development of a flute instability of the plasma boundary are observed, which, at the late stages of expansion, leads to the plasma leaving the injection region in the form of several jets across the field. During transverse injection, the formation of a collimated flow, a “plasma sheet,” is observed, in which, as the plasma moves across the field, inhomogeneous structures develop in the direction of injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. K. Burdonov, R. Bonito, T. Giannini, et al., Astron. Astrophys. 648, A81 (2021).

    Article  Google Scholar 

  2. K. Burdonov, W. Yao, A. Sladkov, et al., Astron. Astrophys. 2657, A112 (2022).

    Article  Google Scholar 

  3. A. A. Solov’ev, K. F. Burdonov, A. V. Kotov, et al., Radiophys. Quantum Electron. 63, 876 (2020).

    Article  ADS  Google Scholar 

  4. H. C. Spruit, T. Foglizzo, and R. Stehle, Mon. Not. R. Astron. Soc. 288, 333 (1997).

    Article  ADS  Google Scholar 

  5. S. Matt, R. Winglee, and K. H. Böhm, Mon. Not. R. Astron. Soc. 345, 660 (2003).

    Article  ADS  Google Scholar 

  6. B. Albertazzi, A. Ciardi, M. Nakatsutsumi, et al., Science (Washington, DC, U. S.) 346, 325 (2014).

    Article  ADS  Google Scholar 

  7. D. P. Higginson, G. Revet, B. Khiar, et al., High Energy Dens. Phys. 23, 48 (2017)

    Google Scholar 

  8. D. D. Ryutov, Phys. Plasmas 25, 100501 (2018)

  9. Yu. P. Zakharov, A. M. Orishich, A. G. Ponomarenko, et al., Sov. J. Plasma Phys. 12, 674 (1986).

    Google Scholar 

  10. Yu. P. Zakharov, V. M. Antonov, E. L. Boyarintsev, A. V. Melekhov, V. G. Posukh, I. F. Shaikhislamov, and V. V. Pickalov, Plasma Phys. Rep. 32, 183 (2006).

    Article  ADS  Google Scholar 

  11. Y. P. Zakharov, IEEE Trans. Plasma Sci. 31, 1243 (2003).

    Article  ADS  Google Scholar 

  12. J. Bonde, S. Vincena, and W. Gekelman, Phys. Plasmas 25, 042110 (2018).

  13. M. van Zeeland and W. Gekelman, Phys. Plasmas 11, 320 (2004).

    Article  ADS  Google Scholar 

  14. A. Fazzini, W. Yao, K. Burdonov, et al., Astron. Astrophys. 665, A87 (2022)

    Article  Google Scholar 

  15. B. A. Remington, R. P. Drake, and D. D. Ryutov, Rev. Mod. Phys. 78, 755 (2006)

    Article  ADS  Google Scholar 

  16. V. S. Beskin, V. I. Krauz, and S. A. Lamzin, Phys. Usp. 65 (10) (2022, in press).

  17. P. M. Bellan, X. Zhai, K. B. Chai, and B. N. Ha, J. Plasma Phys. 81, 495810502 (2015).

  18. T. C. Underwood, K. T. Loebner, V. A. Miller, et al., Sci. Rep. 9, 1 (2019).

    Article  Google Scholar 

  19. Y. P. Zakharov, A. G. Ponomarenko, V. A. Terekhin, et al., Quantum Electron. 49, 181 (2019)

    Article  ADS  Google Scholar 

  20. Y. P. Zakharov, V. P. Neznamov, V. A. Terekhin, et al., J. Phys.: Conf. Ser. 2067, 012021 (2020)

  21. J. Marshall, Phys. Fluids 3, 134 (1960).

    Article  ADS  Google Scholar 

  22. H. W. Friedman and R. M. Patrick, Phys. Fluids 14, 1889 (1971).

    Article  ADS  Google Scholar 

  23. B. G. Gavrilov, S. A. Kozhukhov, and D. B. Sobyanin, Tech. Phys. 39, 864 (1994).

    Google Scholar 

  24. S. V. Korobkov, M. E. Gushchin, V. I. Gundorin, I. Yu. Zudin, N. A. Aidakina, A. V. Strikovskiy, and A. S. Nikolenko, Tech. Phys. Lett. 45, 228 (2019).

    Article  ADS  Google Scholar 

  25. N. A. Aidakina, A. G. Galka, V. I. Gundorin, M. E. Gushchin, I. Yu. Zudin, S. V. Korobkov, A. V. Kostrov, K. N. Loskutov, M. M. Mogilevskiy, S. E. Priver, A. V. Strikovskiy, D. V. Chugunin, and D. V. Yanin, Geomagn. Aeron. 58, 314 (2018).

    Article  ADS  Google Scholar 

  26. Y. Zhang, D. M. Fisher, M. Gilmore, et al., Phys. Plasmas 25, 055709 (2018)

  27. M. E. Gushchin, S. V. Korobkov, V. A. Terekhin, A. V. Strikovskiy, V. I. Gundorin, I. Yu. Zudin, N. A. Aidakina, and A. S. Nikolenko, JETP Lett. 108, 391 (2018).

    Article  ADS  Google Scholar 

  28. B. Khiar, G. Revet, A. Ciardi, et al., Phys. Rev. Lett. 20, 205001 (2019).

  29. P. J. Armitage, M. Livio, and J. E. Pringle, Mon. Not. R. Astron. Soc. 324, 705 (2001).

    Article  ADS  Google Scholar 

  30. P. J. Armitage, Mon. Not. R. Astron. Soc. 274, 1242 (1995).

    ADS  Google Scholar 

  31. P. J. Armitage, Astrophys. Lett. 833, L15 (2016).

    Article  ADS  Google Scholar 

  32. C. Argiroffi, J. J. Drake, R. Bonito, et al., Astron. Astrophys. 607, A14 (2017).

    Article  Google Scholar 

  33. D. Ryutov, B. Remington, H. Robey, et al., Phys. Plasmas 8, 1804 (2001).

    Article  ADS  Google Scholar 

  34. D. Ryutov, R. P. Drake, J. Kane, et al., Astrophys. J. 518, 821 (1999).

    Article  ADS  Google Scholar 

  35. I. M. Podgornyi and R. Z. Sagdeev, Sov. Phys. Usp. 12, 445 (1969).

    Article  ADS  Google Scholar 

  36. V. B. Baranov, Kosm. Issled. 2, 109 (1969).

    ADS  Google Scholar 

  37. K. Schindler, Rev. Geophys. 7, 51 (1969).

    Article  ADS  Google Scholar 

  38. S. Orlando, F. Reale, G. Peres, et al., Mon. Not. R. Astron. Soc. 415, 3380 (2011).

    Article  ADS  Google Scholar 

  39. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, et al., Astrophys. J. 578, 420 (2002).

    Article  ADS  Google Scholar 

  40. T. Giannini, S. Antoniucci, D. Lorenzetti, et al., Astrophys. J. 839, 112 (2017).

    Article  ADS  Google Scholar 

  41. P. Hartigan, A. Frank, P. Varniere, et al., Astrophys. J. 661, 910 (2007).

    Article  ADS  Google Scholar 

  42. T. P. Ray, T. W. B. Muxlow, D. J. Axon, et al., Nature (London, U.K.) 385, 415 (1997).

    Article  ADS  Google Scholar 

  43. J. A. Morse, P. Hartigan, G. Cecil, et al., Astrophys. J. 399, 231 (1992).

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the 10th project of the National Center for Physics and Mathematics (NTsFM) “Experimental laboratory astrophysics and geophysics” using a unique scientific facility “Complex of large-scale geophysical test facilities of the IAP RAS” (UNU CCGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Korobkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobkov, S.V., Nikolenko, A.S., Gushchin, M.E. et al. Features of Dynamics and Instability of Plasma Jets Expanding into an External Magnetic Field in Laboratory Experiments with Compact Coaxial Plasma Generators on a Large-Scale “Krot” Stand. Astron. Rep. 67, 93–103 (2023). https://doi.org/10.1134/S1063772923010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923010031

Keywords:

Navigation