Log in

Prospects of Observing Gamma-Ray Bursts with Orbital Detectors of Ultra-High-Energy Cosmic Rays

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

TUS (Tracking Ultraviolet Set-up), the first orbital telescope of ultra-high energy cosmic rays (UHECRs), has demonstrated that instruments of this kind have much broader capabilities and can also detect various transient luminous events, meteors, anthropogenic glow and other processes taking place in Earth atmosphere in the UV frequency range. In this short paper, we address the question whether an orbital detector of UHECRs can also register gamma-ray bursts (GRBs) via the fluorescent glow of irradiated nocturnal atmosphere. We analyse the latest Fermi GBM catalog of GRBs and properties of several active and perspective instruments. The study reveals that even an avanced detector with parameters of an optical system similar to that of the KLYPVE-EUSO (K-EUSO) or POEMMA telescopes and an appropriate trigger tuned to register events that evolve much slower than an extensive air shower, has very modest capabilities in this respect and will be able to observe only a few GRBs per year of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The latter opportunity was kindly pointed out by Toshikazu Ebisuzaki (RIKEN).

  2. The TUS telescope did not have side shields, so that a trigger could be caused by an illumination of the mirror by a flash located far from the field of view, resulting in a signal over the whole focal surface. This situation is excluded in the future detectors, see below.

  3. In general case, one should include an impact of the signal in the denominator of the formula for the SNR. In our case, \({{N}_{s}} \ll {{\mathcal{R}}_{b}}{{t}_{{{\text{GRB}}}}}\) so that we can omit this term.

  4. Fermi GBM operates in the 8 keV–40 MeV energy range because prompt emission of a “typical” GRB peaks at energies \(O\)(100) keV.

REFERENCES

  1. R. W. Klebesadel, in Gamma-ray Bursts–Observations, Analyses and Theories, Ed. by Cheng Ho, R. I. Epstein, and E. E. Fenimore (Cambridge Univ. Press, Cambridge, 1992), p. 161.

    Google Scholar 

  2. J. P. Dezalay, C. Barat, R. Talon, R. Syunyaev, O. Terekhov, and A. Kuznetsov, AIP Conf. Ser. 265, 304 (1992).

  3. C. Kouveliotou, C. A. Meegan, G. J. Fishman, N. P. Bhat, M. S. Briggs, T. M. Koshut, W. S. Paciesas, and G. N. Pendleton, Astrophys. J. 413, L101 (1993).

    Article  ADS  Google Scholar 

  4. P. Kumar and B. Zhang, Phys. Rep. 561, 1 (2015).

    Article  ADS  Google Scholar 

  5. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, et al., Astrophys. J. Lett. 848, L12 (2017).

    Article  ADS  Google Scholar 

  6. O. Catalano, J. Linsley, G. Pizzichini, B. Sacco, and L. Scarsi, in Proceedings of the 25th International Cosmic Ray Conference, Durban, South Africa, July 30–Aug. 6, 1997, Ed. by M. S. Potgieter, C. Raubenheimer, and D. J. van der Walt (Potchefstroom Univ., Transvaal, South Africa, 1997), Vol. 7, p. 365.

  7. H. Fukunishi, Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons, Geophys. Res. Lett. 23, 2157 (1996).

    Article  ADS  Google Scholar 

  8. B. A. Khrenov, P. A. Klimov, M. I. Panasyuk, S. A. Sharakin, et al., J. Cosmol. Astropart. Phys., No. 9, 006 (2017).

  9. M. Zotov and the Lomonosov UHECR/TLE Collab., in Proceedings of the 2016 International Conference on Ultra-High Energy Cosmic Rays (UHECR2016), Kyoto, Japan, October 11–14, 2016, JPS Conf. Proc. 19, 011029 (2018).

  10. P. Klimov, B. Khrenov, S. Sharakin, M. Zotov, et al., in Proceedings of the 6th International TEPA Symposium on Thunderstorms and Elementary Particle Acceleration (TEPA-2016), Byurakan, Armenia, October 3–7, 2016, Ed. by A. Chilingarian (Yerevan Physics Inst., 2017), p. 122.

  11. M. Yu. Zotov and the Lomonosov UHECR/TLE Collab., Phys. Part. Nucl. 49, 612 (2018).

    Article  Google Scholar 

  12. P. Klimov, B. Khrenov, M. Kaznacheeva, G. Garipov, et al., Remote Sens. 11, 2449 (2019).

    Article  ADS  Google Scholar 

  13. M. Zotov and the Lomonosov UHECR/TLE Collab., in Proceedings of the 26th Extended European Cosmic Ray Symposium E 2018, in conjunction with 35th Russian Cosmic Ray Conference (RCRC 2018), Barnaul, Russia, July 6–10, 2018 (Altai Gos. Univ., Barnaul, 2018), p. 135.

  14. B. A. Khrenov, G. K. Garipov, M. A. Kaznacheeva, P. A. Klimov, et al., J. Cosmol. Astropart. Phys., No. 03, 033 (2020).

  15. K. Shinozaki, A. Montanaro, M. Bertaina, F. Fenu, and S. Ferrarese, in Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, July 24–Aug. 1, 2019, Proc. of Sci. 36, 545 (2019).

  16. A. von Kienlin, C. A. Meegan, W. S. Paciesas, P. N. Bhat, et al., Astrophys. J. 893, 46 (2020).

    Article  ADS  Google Scholar 

  17. P. Klimov, M. Casolino, and the JEM-EUSO Collab., in Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), July 10–20, 2017, Bexco, Busan, Korea, Proc. of Sci. 301, 412 (2017).

  18. A. V. Olinto, J. H. Adams, R. Aloisio, L. A. Anchordoqui, et al., in Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea, July 10–20, 2017, Proc. of Sci. 301, 542 (2017).

  19. F. Capel, A. Belov, M. Casolino, and P. Klimov, Adv. Space Res. 62, 2954 (2018).

    Article  ADS  Google Scholar 

  20. P. A. Klimov, M. I. Panasyuk, B. A. Khrenov, G. K. Garipov, et al., Space Sci. Rev. 212, 1687 (2017).

    Article  ADS  Google Scholar 

  21. G. K. Garipov, M. Yu. Zotov, P. A. Klimov, M. I. Panasyuk, et al., Bull. Russ. Acad. Sci.: Phys. 79, 326 (2015).

    Article  Google Scholar 

  22. M. Panasyuk, P. Klimov, B. Khrenov, S. Sharakin, et al., in Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, July 30–Aug. 6, 2015, Proc. of Sci. 34, 669 (2015).

  23. M. Casolino, A. Belov, M. Bertaina, T. Ebisuzaki, and the JEM-EUSO Collab., in Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea, July 10–20, 2017, Proc. of Sci. 301, 368 (2017).

  24. J. H. Adams Jr. and the JEM-EUSO Collab., Exp. A-stron. 40, 3 (2015).

    ADS  Google Scholar 

  25. J. H. Adams Jr. and the JEM-EUSO Collab., Exp. -Astron. 40, 19 (2015).

    Article  ADS  Google Scholar 

  26. J. H. Adams Jr. and the JEM-EUSO Collab., Exp. -Astron. 40, 253 (2015).

    Article  ADS  Google Scholar 

  27. M. Casolino and the JEM-EUSO Collab., in Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea, July 10–20, 2017, Proc. of Sci. 301, 370 (2017).

  28. A. Belov, M. Bertaina, F. Capel, F. Fausti, F. Fenu, P. Klimov, M. Mignone, and H. Miyamoto, Adv. Space Res. 62, 2966 (2018).

    Article  ADS  Google Scholar 

  29. A. E. Grün and E. Schopper, Zeitschr. Naturf., A 9, 134 (1954).

  30. F. Arqueros, J. R. Hörandel and B. Keilhauer, Nucl. Instrum. Methods Phys. Res., Sect. A 597, 23 (2008).

    Google Scholar 

  31. A. N. Bunner, PhD Thesis (1967).

  32. J. L. Elliot, SAO Spec. Rep. 341 (1972).

  33. T. C. Weekes, J. Atmos. Terr. Phys. 38, 1021 (1976).

    Article  ADS  Google Scholar 

  34. M. Nagano, K. Kobayakawa, N. Sakaki, and K. Ando, Astropart. Phys. 20, 293 (2003).

    Article  ADS  Google Scholar 

  35. M. Nagano, K. Kobayakawa, N. Sakaki, and K. Ando, Astropart. Phys. 22, 235 (2004).

    Article  ADS  Google Scholar 

  36. G. K. Garipov, B. A. Khrenov, M. I. Panasyuk, V. I. Tulupov, A. V. Shirokov, I. V. Yashin, and H. Salazar, Astropart. Phys. 24, 400 (2005).

    Article  ADS  Google Scholar 

  37. J. H. Adams Jr., S. Ahmad, J.-N. Albert, D. Allard, et al., Astropart. Phys. 44, 76 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the anonymous referee for numerous insightful comments that allowed us to clarify some important issues in the text. We also thank Mario Bertaina for a valuable comment, and Alexander Belov and Pavel Klimov for helpful discussions of the design of K-EUSO and Mini-EUSO. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The authors acknowledge support of the Interdisciplinary Scientific and Educational School of Moscow University “Fundamental and Applied Space Research”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Pshirkov or M. Yu. Zotov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshirkov, M.S., Zotov, M.Y. Prospects of Observing Gamma-Ray Bursts with Orbital Detectors of Ultra-High-Energy Cosmic Rays. Astron. Rep. 65, 269–274 (2021). https://doi.org/10.1134/S1063772921040041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921040041

Navigation