Log in

Improving the Localization Accuracy of Dipole Sound Sources Using Planar Microphone Arrays

  • ATMOSPHERIC AND AEROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A method has been developed for tuning the microphone array for optimal visualization of acoustic dipoles. Acoustic dipoles were generated under experimental conditions in an anechoic chamber using a subsonic air flow around a thin metal rod and thin rectangular plate. To confirm the operability of this approach, we compared the visualization maps obtained using the approach with the results obtained with a similar array class tuned in the traditional monopole method. The developed approach, which adapts the array to the dipole radiation model and modifies the transfer functions that take into account the influence of the incidence pattern of sound waves, demonstrates an increase in the array’s dynamic range with optimal microphone placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. M. Y. Zaytsev, V. F. Kopiev, S. A. Velichko, and I. V. Belyaev, in Proc. 25th AIAA/CEAS Aeroacoustics Conf. (Delft, 2019), Paper No. 2019-2426.

  2. C. J. Bahr, W. M. Humphreys, D. Ernst, T. Ahlefeldt, C. Spehr, A. Pereira, Q. Leclère, C. Picard, R. Porteous, D. Moreau, J. R. Fischer, and C. J. Doolan, in Proc. 23rd AIAA/CEAS Aeroacoustics Conf. (Denver, 2017), Paper No. 2017-3718.

  3. V. F. Kopiev, I. V. Khramtsov, V. V. Ershov, and V. V. Palchikovskiy, Acoust. Phys. 65 (1), 67 (2019).

    Article  ADS  Google Scholar 

  4. Yu. V. Bersenev, T. A. Viskova, I. V. Belyaev, V. V. Pal’chikovskii, O. Yu. Kustov, V. V. Ershov, and R. V. Burdakov, Vestn. Perm. Nats. Issed. Politekh. Univ., Mekh., No. 1, 26 (2016).

  5. T. Ishii, Y. Ishii, J. Hald, K. Nagai, and H. Oinuma, in Proc. 7th Berlin Beamforming Conf. (Berlin, 2018), Paper No. BeBeC-2018-D25.

  6. J. J. Christensen and J. Hald, Beamforming. Technical Review (Bruel & Kjær Sound & Vibration Measurements A/S, Nærum, 2004).

    Google Scholar 

  7. P. Sijtsma, in Proc. 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf.) (Rome, 2007), Paper No. 2007-3436.

  8. A. Steinhardt and B. Van Veen, Int. J. Adapt. Contr. Signal Process. 3, 253 (1989).

    Article  ADS  Google Scholar 

  9. T. F. Brooks and W. M. Humphreys, J. Sound Vib. 294 (4-5), 856 (2006).

  10. P. Zavala, W. Roeck, K. Janssens, J. Arruda, P. Sas, and W. Desmet, in Proc. 16th AIAA/CEAS Aeroacoustics Conf. (Stockholm, 2010), Paper No. 2010-3740.

  11. P. Sijtsma, National Aerospace Laboratory (NLR) Repert No. NLR-TP-2004-165 (2004).

  12. N. Curle, Proc. R. Soc. A 231, 505 (1955).

    ADS  MathSciNet  Google Scholar 

  13. Y. Liu, A. Quayle, A. Dowling, and P. Sijtsma, J. Acoust. Soc. Am. 124 (1), 182 (2008).

    Article  ADS  Google Scholar 

  14. T. Suzuki, J. Sound Vib. 330 (24), 5835 (2011).

  15. O. P. Bychkov, M. A. Dem’yanov, and G. A. Faranosov, Acoust. Phys. 65 (5), 567 (2019).

    Article  ADS  Google Scholar 

  16. R. Porteous, Z. Prime, C. J. Doolan, D. J. Moreau, and V. Valeau, J. Sound Vib. 355, 117 (2015).

  17. P. Jordan, J. Fitzpatrick, and J. Valiere, J. Acoust. Soc. Am. 111 (3), 1267 (2002).

    Article  ADS  Google Scholar 

  18. B. Oudompheng, A. Pereira, C. Picard, Q. Leclère, and B. Nicolas, in Proc. 5th Berlin Beamforming Conf. (Berlin, 2014), Paper No. BeBeC-2014-12.

  19. J. Hald and J. J. Christensen, in Proc. Int. Congress and Exposition on Noise Control Engineering (Inter-Noise 2002) (Dearborn, MI, 2002).

  20. J. Hald and J. J. Christensen, J. Acoust. Soc. Am. 112 (5), 2448 (2002).

    Article  ADS  Google Scholar 

  21. A. Malgoezar, M. Snellen, P. Sijtsma, and D. Simons, in Proc. 6th Berlin Beamforming Conf. (Berlin, 2016), Paper No. BeBeC-2016-S5.

  22. D. Lashi, Q. Quevy, and J. Lemeire, in Proc. 4th Int. Conf. on Cloud Computing Technologies and Applications (Cloudtech) (Brussels, 2018).

  23. F. Soltankarimi, J. Nourinia, and Ch. Ghobadi, in Proc. 8th IEEE Int. Symp. on Spread Spectrum Techniques and Applications (Sydney, 2004), IEEE Cat. No. 04TH8738, p. 389.

  24. P. Gerstofta and W. Hodgkiss, J. Acoust. Soc. Am. 129 (4), 135 (2011).

    Article  ADS  Google Scholar 

  25. M. Bai, J. Lin, and K. Liu, J. Sound Vib. 329 (14), 2809 (2010).

  26. M. Li, L. Wei, Q. Fu, and D. Yang, J. Vib. Acoust. 137 (3), 031007 (2015).

    Article  Google Scholar 

  27. Z. Prime, C. Doolan, and B. Zajamsek, in Proc. 43rd Int. Congress and Exhibition on Noise Control Engineering (Inter-Noise 2014) (Melbourne, 2014).

  28. V. V. Ershov, Nauch.-Tekhn. Vestn. Povolzh’ya, No. 11, 20 (2019).

    Google Scholar 

  29. I. V. Khramtsov, V. V. Ershov, and E. S. Cherenkova, in Proc. Int. Conf. on Dynamics and Vibroacoustics of Machines (DVM) (Samara, 2020).

  30. V. V. Ershov, E. V. Sorokin, V. V. Palchikovskiy, and I. A. Korin, in Proc. Int. Conf. on Dynamics and Vibroacoustics of Machines (DVM) (Samara, 2020).

  31. V. V. Palchikovskiy, I. V. Khramtsov, V. V. Ershov, D. A. Gornova, and A. A. Selivanova, Mater. Sci. Eng. 208 (012032) (2017).

  32. M. Demyanov, O. Bychkov, G. Faranosov, and M. Zaytsev, in Proc. 7th Berlin Beamforming Conf. (Berlin, 2018), Paper No. BeBeC-2018-D16.

  33. O. P. Bychkov and G. A. Faranosov, Acoust. Phys. 66 (1), 33 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of the program of activities of the Perm Scientific and Educational Center “Rational Subsoil Use.” Experiments were conducted with the use of the unique scientific installation “Acoustic Anechoic Chamber with Aerodynamic Noise Sources, registration no. 500617. Part of the study related to setting up a conventional array to extract dipoles was carried out in the TsAGI AC-2 anechoic chamber with flow, upgraded with the financial support of the Ministry of Science and Higher Education of the Russian Federation under agreement no. 075-15-2022-1036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ershov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopiev, V.F., Ershov, V.V., Khramtsov, I.V. et al. Improving the Localization Accuracy of Dipole Sound Sources Using Planar Microphone Arrays. Acoust. Phys. 69, 206–219 (2023). https://doi.org/10.1134/S1063771023600055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771023600055

Keywords:

Navigation