Log in

Analysis of the Vibrational Process Inside an Acoustic Interference Array Using the Reverberation Matrix Method

  • PHYSICAL FOUNDATIONS OF TECHNICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The theoretical study of sound field formation in an acoustic interference array presented in this article is motivated by an analysis of the physical principle of operation of a highly directional interference microphone. One of the objectives of the study is to determine the sound pressure acting on the microphone membrane inside the array. The sound field inside the interference array is analyzed using a matrix method, similar to the reverberation matrix method. The solution is formally represented as a Schwarzschild series. The result calculated by this method agrees well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Sh. Ya. Vakhitov, A. A. Fadeev, Yu .A. Kovalgin, and Yu. P. Shchev’ev, Acoustics. Student’s Book for Universities (Goryachaya Liniya-Telekom, Moscow, 2009) [in Russian].

  2. A. O. Subbotkin and Sh. Ya. Vakhitov, Mir Tekh. Kino 12 (3), 24 (2018).

    Google Scholar 

  3. A. D. Lapin, Sov. Phys. Acoust. 7 (2), 218 (1961).

    Google Scholar 

  4. S. V. Gorin and A. N. Lesnyak, Sov. Phys. Acoust. 23 (5), 496 (1987).

    Google Scholar 

  5. A. D. Lapin, Acoust. Phys. 40 (6), 887 (1994).

    ADS  Google Scholar 

  6. A. D. Lapin, Acoust. Phys. 58 (5), 530 (2012).

    Article  ADS  Google Scholar 

  7. I. A. Urusovskii, Sov. Phys. Acoust. 18 (3), 448 (1972).

    Google Scholar 

  8. V. M. Batenchuk-Tusko, D. T. Golubitskii, and V. V. Elagin, Sov. Phys. Acoust. 16 (2), 92 (1980).

    Google Scholar 

  9. G. R. Dix, Development and Comparison of Highly Directional Loudspeakers (Brigham Young University Scholars Archive Citation, Provo, 2006).

    Google Scholar 

  10. W. P. Mason and R. N. Marshall, J. Acoust. Soc. Am. 10, 206 (1939).

    Article  ADS  Google Scholar 

  11. L. Beranek, Acoustic Measurements (Wiley, London; Chapman & Hall, New York, 1949).

  12. L. L. Beranek, Acoustic Measurements (Wiley, New York, 1949; Izd. Inostrannoi Literatury, Moscow, 1952).

  13. V. K. Iofe, Electroacoustics (Svyaz’izdat, Moscow, 1954) [in Russian].

    Google Scholar 

  14. V. V. Furduev, Acoustical Foundations of Broadcasting (Svyaz’izdat, Moscow, 1960) [in Russian].

    Google Scholar 

  15. A. V. Rimskii-Korsakov, Electroacoustics (Svyaz’, Moscow, 1973) [in Russian].

    Google Scholar 

  16. E. Skudrzyk, The Foundations of Acoustics (SpringerVerlag, Wien, New York, 1971; Mir, Moscow, 1976).

  17. M. A. Sapozhkov, Electroacoustics. Student’s Book for Universities (Svyaz’, Moscow, 1978) [in Russian].

    Google Scholar 

  18. Ya. Sh. Vakhitov, Theoretical Foundations of Electroacoustics and Electroacoustical Equipment (Iskusstvo, Moscow, 1982) [in Russian].

    Google Scholar 

  19. M. Kleiner, Electroacoustics (CRC Press, 2013).

    Book  Google Scholar 

  20. Sh. Ya. Vakhitov, Modern Microphones. Theory and Design (St. Petersburg State Univ. of Film and Television, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  21. K. Ono, T. Sugimoto, A. Ando, K. Hamasaki, T. Ishii, Y. Chiba, and K. Imanaga, in Proc. 129th Convention of Audio Engineering Society (San Francisco, 2010), Convention Paper No. 8216.

  22. S. Vakhitov, in Proc. 21st Conf. of the Audio Engineering Society (St. Petersburg, 2002), p. 3.

  23. I. G. Dreizen, Electroacoustics and Sound Broadcasting (Svyaz’izdat, Moscow, 1961) [in Russian].

    Google Scholar 

  24. Y. H. Pao, X. Y. Su, and J. Y. Tian, J. Sound Vib. 230 (4), 743 (2000).

  25. J. M. Arnold, in Proc. IEEE Int. Conf. on Electromagnetics in Advanced Applications (ICEAA) (Verona, 2017).

  26. K. Schwarzschild, Math. Ann. 55 (2), 177 (1901).

    Article  MathSciNet  Google Scholar 

  27. T. N. Carnes, D. D. Reynolds, and E. L. Hixson, J. Eng. Ind. 103 (4), 361 (1981).

    Article  Google Scholar 

  28. M. R. Bai and Y. Y. Lo, J. Acoust. Soc. Am. 133 (4), 2036 (2013).

    Article  ADS  Google Scholar 

  29. M. R. Bai, Y. Y. Lo, and Y. S. Chen, J. Acoust. Soc. Am. 138 (4), 2279 (2015).

    Article  ADS  Google Scholar 

  30. Y. Sasaki, T. Nishiguchi, K. Ono, T. Ishii, Y. Chiba, and A. Morita, in Proc. 141st Convention of Audio Engineering Society (Los Angeles, 2016), Convention Paper No. 9639 .

  31. E. Brandão, W. D. A. Fonseca, and P. H. Mareze, J. Acoust. Soc. Am. 152 (1), 667 (2022).

    Article  ADS  Google Scholar 

  32. S. N. Rzhevkin, Sound Theory. Lecture Course (Moscow Univ., Moscow, 1960) [in Russian].

    Google Scholar 

  33. R. Causse, J. Kergomard, and X. Lurton, J. Acoust. Soc. Am. 75, 241 (1984).

    Article  ADS  Google Scholar 

  34. J. P. Dalmont, C. J. Nederveen, and N. Joly, J. Sound Vib. 244 (3), 505 (2001).

  35. L. Ya. Gutin, Zh. Tekh. Fiz. 7 (10), 1096 (1937).

    Google Scholar 

  36. Y. H. Pao, W. Q. Chen, and X. Y. Su, Wave Motion 44 (6), 419 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. V. Shanin and V. Yu. Valyaev, Acoust. Phys. 57 (3), 427 (2011).

  38. V. Yu. Valyaev and A. V. Shanin, Acoust. Phys. 58 (6), 731 (2012).

  39. S. L. Denisov and A. I. Korol’kov, Acoust. Phys. 63 (4), 462 (2017).

  40. A. A. Belous, A. I. Korol’kov, and A. V. Shanin, Acoust. Phys. 64 (2), 158 (2018).

  41. A. I. Korol’kov, A. V. Shanin, and A. A. Belous, Acoust. Phys. 65 (4), 340 (2019).

  42. A. A. Belous, A. I. Korol’kov, A. V. Shanin, and N. N. Ostrikov, Acoust. Phys. 65 (1), 60 (2019).

  43. S. L. Denisov, N. N. Ostrikov, and I. V. Pankratov, Acoust. Phys. 66 (6), 624 (2020).

Download references

ACKNOWLEDGMENTS

The author thanks Associate Professor of the Department of Acoustics, Faculty of Physics, Moscow State University, Doctor of Physical and Mathematical Sciences Andrey Vladimirovich Shanin for his interest in the study and scientific advice.

Funding

This study supported by the budget of the Prokhorov General Physics Institute, Russian Academy of Sciences. No additional grants were received to conduct or direct this specific study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Subbotkin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbotkin, A.O. Analysis of the Vibrational Process Inside an Acoustic Interference Array Using the Reverberation Matrix Method. Acoust. Phys. 70, 194–207 (2024). https://doi.org/10.1134/S1063771022600632

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022600632

Keywords:

Navigation