Log in

Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The possibility of increasing the efficiency of a beta-voltaic generator due to using a single-crystal bimorph element made of lithium niobate as a piezoelectric converter. The known beta voltaic alternators consist of a piezoelectric cantilever and a source of β-electrons. The cantilever represents a resilient member made, for example, of silicon, on which a piezoelectric element made of PZT piezoceramics is mounted. It is proposed to replace the silicon cantilever structure with a piezoelectric element by a uniform cantilever that represents a thin wafer made of a bidomain single-crystal lithium niobate. Due to this, the efficiency of the mechanical oscillation conversion into electrical power, the system Q-factor, and the stability of the operating parameters simultaneously increase; and the operation temperature range also significantly increases (by several hundred degrees). The solution of the main problem—the formation of a bidomain structure in a thin wafer of lithium niobate—is considered in detail. A method for the high-temperature annealing of samples in a nonuniform electric field is proposed. It is demonstrated that one can predict the domain structure based on the developed model. Samples are obtained having the occurrence depth of the interdomain boundary ranging from 120 to 150 μm. At the same time, it is shown that the sharpness of the boundary depends on the potential difference between the striated electrodes of the technological cell and the external electrode. The method is efficient for manufacturing a bidomain structure in a wafer up to 300 μm thick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yurchuk, S.Yu., Legotin, S.A., Murashev, V.N., Krasnov, A.A., Omel’chenko, Yu.K., Osipov, Yu.V., Didenko, S.I., and Rabinovich, O.I., Simulation the beta power sources characteristics, J. Nano-Electron. Phys., 2015, vol. 7, no. 3, pp. 03014-1–03014-5.

    Google Scholar 

  2. Murashev, V.N., Legotin, S.A., Rabinovich, O.I., Abdulaev, O.R., and Osipov, U.V., Silicon betavoltaic batteries structures, J. Nano-Electron. Phys., 2015, vol. 7, no. 4, pp. 04034-1–04034-3.

    Google Scholar 

  3. Duggirala, R., Polcawich, R. G., Dubey, M., and Lal, A., Radioisotope thin-film fueled microfabricated reciprocating electromechanical power generator, J. Microelectromech. Syst., 2008, vol. 17, no. 4, pp. 837–849. doi 10.1109/JMEMS.2008.924854

    Article  Google Scholar 

  4. Wang, Q.-M. and Cross, L.E., Performance analysis of piezoelectric cantilever bending actuators, Ferroelectrics, 1998, vol. 215, no. 1, pp. 187–213. doi 10.1080/00150199808229562

    Article  Google Scholar 

  5. Friend, J., Umeshima, A., Ishii, T., Nakamura, K., and Ueha, S., A piezoelectric linear actuator formed from a multitude of bimorphs, Sens. Actuators A: Phys., 2004, vol. 109, no. 3, pp. 242–251. doi 10.1016/j.sna.2003.10.040

    Article  Google Scholar 

  6. Lal, A. and Blanchard, J., Daintiest dynamos [nuclear microbatteries], IEEE Spectrum., 2004, vol. 41, no. 9, pp. 36–41. doi 10.1109/MSPEC.2004.1330808

    Article  Google Scholar 

  7. Lal, A., Duggirala, R., and Li, H., Pervasive power: a radioisotope-powered piezoelectric generator, IEEE Pervas. Comput., 2005, vol. 4, no. 1, pp. 53–61. doi 10.1109/MPRV.2005.21

    Article  Google Scholar 

  8. Duggirala, R., Li, H., and Lal, A., High efficiency ß radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics, Appl. Phys. Lett., 2008, vol. 92, no. 15, pp. 154104-1–154104-3. doi 10.1063/1.2912522

    Google Scholar 

  9. Funasaka, T., Furuhata, M., Hashimoto, Y., and Nakamura, K., Piezoelectric generator using a LiNbO3 plate with an inverted domain, IEEE Ultrason. Symp. Proc., 1998, vol. 1, pp. 959–962.

    Google Scholar 

  10. Uchino, K., Yoshizaki, M., and Nagao, A., Monomorph characteristics in Pb(Zr,Ti)O3 based ceramics, Ferroelectrics, 1989, vol. 95, no. 1, pp. 161–164. doi 10.1080/00150198908245196

    Article  Google Scholar 

  11. Nakamura, K., Ando, H., and Shimizu, H., Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment, Appl. Phys. Lett., 1987, vol. 50, no. 20, pp. 1413–1414. doi 10.1063/1.97838

    Article  Google Scholar 

  12. Kubasov, I.V., Timshina, M.S., Kiselev, D.A., Malinkovich, M.D., Bykov, A.S., and Parkhomenko, Yu.N., Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing, Crystallogr. Rep., 2015, vol. 60, no. 5, pp. 700–705. doi 10.1134/S1063774515040136

    Article  Google Scholar 

  13. Antipov, V.V., Bykov, A.S., Malinkovich, M.D., and Parkhomenko, Y.N., Formation of bidomain structure in lithium niobate single crystals by electrothermal method, Ferroelectrics, 2008, vol. 374, no. 1, pp. 65–72. doi 10.1080/00150190802427127

    Article  Google Scholar 

  14. Gopalan, V., Dierolf, V., and Scrymgeour, D.A., Defect-domain wall interactions in trigonal ferroelectrics, Ann. Rev. Mater. Res., 2007, vol. 37, pp. 449–489. doi 10.1146/annurev.matsci.37.052506.084247

    Article  Google Scholar 

  15. Niizeki, N., Yamada, T., and Toyoda, H., Growth ridges, etched hillocks, and crystal structure of lithium niobate, Jpn. J. Appl. Phys., 1967, vol. 6, no. 3, pp. 318–327.

    Article  Google Scholar 

  16. Bykov, A.S., Grigoryan, S.G., Zhukov, R.N., Kiselev, D.A., Ksenich, S.V., Kubasov, I.V., Malinkovich, M.D., and Parkhomenko, Yu.N., Formation of bidomain structure in lithium niobate plates by the stationary external heating method, Russ. Microelectron., 2014, vol. 43, no. 8, pp. 536–542. doi 10.1134/S1063739714080034

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Malinkovich.

Additional information

Original Russian Text © M.D. Malinkovich, A.S. Bykov, I.V. Kubasov, D.A. Kiselev, S.V. Ksenich, R.N. Zhukov, A.A. Temirov, N.G. Timushkin, Yu.N. Parkhomenko, 2015, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Materialy Elektronnoi Tekhniki, 2015, Vol. 18, No. 4, pp. 255–260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinkovich, M.D., Bykov, A.S., Kubasov, I.V. et al. Formation of a bidomain structure in lithium niobate wafers for beta-voltaic alternators. Russ Microelectron 45, 582–586 (2016). https://doi.org/10.1134/S1063739716080096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739716080096

Keywords

Navigation