Log in

Morphological Analysis of the Hemolymph Cell Composition in the Bivalve Mollusk Anadara broughtonii Schrenck, 1867 (Sea of Japan)

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The hemolymph cells of the ark clam Anadara broughtonii were examined using light microscopy, flow cytometry and gradient centrifugation. All three methods of analysis made it possible to identify two main types of cells in the hemolymph of the ark clam Anadara broughtonii, that is, large granular erythrocytes and small agranular amebocytes. Erythrocytes accounted for 95.6 ± 0.9% of the total number of hemolymph cells. Erythrocytes were hemoglobin-containing cells with a great number of granules in the cytoplasm, a low nuclear-cytoplasmic ratio (NCR) and a lower intensity of cellular respiration compared to amebocytes. Amebocytes are cells of predominantly irregular shape with a high number of cells that do not contain granular inclusions or contain no more than ten in the cytoplasm. All types of hemocytes found in the ark clam hemolymph demonstrated the same ability to spontaneously produce reactive oxygen species. For the first time, it has been shown that red blood cells of the ark clam Anadara broughtonii are capable of phagocytosis. At the same time, amebocytes absorbed on the average two times more zymosan particles (10.3 ± 0.7 pcs.) compared to erythrocytes (5.3 ± 0.1 pcs.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Anisimova, A.A., Morphofunctional parameters of hemocytes in the assessment of the physiological status of bivalves, Russ. J. Mar. Biol., 2013, vol. 39, no. 6, pp. 381–391.

    Article  CAS  Google Scholar 

  2. Anisimova, A.A., Diagileva, M.N., Karusheva, O.A., Sinenko, A.V., and Dmitrieva, I.A., The composition and kinetics of the hemocyte population in the mussel Crenomytilus grayanus (Dunker, 1853), Russ. J. Mar. Biol., 2022, vol. 48, no. 4, pp. 256–265.

    Article  CAS  Google Scholar 

  3. Afeychuk, L.S., Assessment of the state of commercial concentrations of Broughton’s anadara (Anadara broughtonii) in Peter the Great Bay (Sea of Japan) based on the results of monitoring in 2010–2020, in Natsional’naya (vserossiyskaya) nauchno-prakticheskaya konferentsiya “Prirodnye resursy, ikh sovremennoe sostoyanie, okhrana, promyslovoe i tekhnicheskoe ispol’zovanie” (Proc. All-Russ. Sci. Pract. Conf. “Natural Resources, their Current State, Protection, Commercial and Technical Use”), Kamchatskii Gos. Tekh. Univ., 2021, no. 12, pp. 11–15.

  4. Prisny, A.A., Pigaleva, T.A., and Kulko, S.V., Morphofunctional traits of hemocytes of land gastropods, Fundam. Issled., 2011, no. 5, pp. 206–210.

  5. Allam, B., Ashton-Alcox, K.A., and Ford, S.E., Flow cytometric comparison of haemocytes from three species of bivalve molluscs, Fish Shellfish Immunol., 2002, vol. 13, no. 2, pp. 141–158.

  6. Andreyeva, A.Y., Efremova, E.S., Kukhareva, T.A., et al., Morphological and functional characterization of hemocytes in cultivated mussel (Mytilus galloprovincialis) and effect of hypoxia on hemocyte parameters, Fish Shellfish Immunol., 2019, vol. 89, pp. 361–367.

    Article  CAS  PubMed  Google Scholar 

  7. Bachère, E., Rosa, R.D., Schmitt, P., et al., The new insights into the oyster antimicrobial defense: Cellular, molecular and genetic view, Fish Shellfish Immunol., 2015, vol. 46, no. 1, pp. 50–64.

    Article  PubMed  Google Scholar 

  8. Cao, A., Mercado, L., Ramos-Martinez, J.I., et al., Primary cultures of hemocytes from Mytilus galloprovincialis Lmk.: Expression of IL-2Rα subunit, Aquaculture, 2003, vol. 216, nos. 1–4, pp. 1–8.

    Article  CAS  Google Scholar 

  9. Cohen, W.D. and Nemhauser, I., Association of centrioles with the marginal band of a molluscan erythrocyte, J. Cell Biol., 1980, vol. 86, no. 1, pp. 286–291.

    Article  CAS  PubMed  Google Scholar 

  10. Dang, C., Cribb, T.H., Osborne, G., et al., Effect of a hemiuroid trematode on the hemocyte immune parameters of the cockle Anadara trapezia, Fish Shellfish Immunol., 2013, vol. 35, no. 3, pp. 951–956.

    Article  PubMed  Google Scholar 

  11. De la Ballina, N.R., Maresca, F., Cao, A., et al., Bivalve haemocyte subpopulations: A Review, Front. Immunol., 2022, vol. 13, p. 826255.https://doi.org/10.3389/fimmu.2022.826255

  12. De Zwaan, A., Isani, G., Cattani, O., and Cortesi, P., Long-term anaerobic metabolism of erythrocytes of the arcid clam Scapharca inaequivalvis, J. Exp. Mar. Biol. Ecol., 1995, vol. 187, no. 1, pp. 27–37.

    Article  CAS  Google Scholar 

  13. Donaghy, L., Kim, B.K., Hong, H.K., et al., Flow cytometry studies on the populations and immune parameters of the hemocytes of the Suminoe oyster, Crassostrea ariakensis, Fish Shellfish Immunol., 2009, vol. 27, no. 2, pp. 296–301. https://doi.org/10.1016/j.fsi.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  14. Fonseca, V.B., Cruz, B.P., da Silva, S.S., et al., Morphological characterization of hemocytes of the brown mussel Perna perna: An update, Fish Shellfish Immunol., 2022, vol. 120, pp. 139–141.

    Article  PubMed  Google Scholar 

  15. Ford, S.E., Ashton-Alcox, K.A., and Kanaley, S.A., Comparative cytometric and microscopic analyses of oyster hemocytes, J. Invertebr. Pathol., 1994, vol. 64, no. 2, pp. 114–122.

    Article  Google Scholar 

  16. Funakoshi, S., Studies on the classification, structure and function of hemocytes in bivalves, Bull. Natl. Res. Inst. Aquacult. (Jpn.), 2000, vol. 29, pp. 1–103.

    Google Scholar 

  17. Gerdol, M., Gomez-Chiarri, M., Castillo, M.G., et al., Immunity in molluscs: Recognition and effector mechanisms, with a focus on Bivalvia, in Advances in Comparative Immunology, Cham: Springer, 2018, pp. 225–341.

    Google Scholar 

  18. Hameed, A., Muhammad, F., Muhammad, A.A., et al., Morphological and structural characterization of blood cells of Anadara antiquata, Iran. J. Fish. Sci., 2018, vol. 17, no. 3, pp. 613–619.

    Google Scholar 

  19. Hegaret, H., Wikfors, G.H., and Soudant, P., Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation: II. Haemocyte functions: Aggregation, viability, phagocytosis, and respiratory burst, J. Exp. Mar. Biol. Ecol., 2003, vol. 293, no. 2, pp. 249–265. https://doi.org/10.1016/S0022-0981(03)00235-1

    Article  Google Scholar 

  20. Holden, J.A., Pipe, R.K., Quaglia, A., and Ciani, G., Blood cells of the arcid clam, Scapharca inaequivalvis, J. Mar. Biol. Assoc. U. K., 1994, vol. 74, no. 2, pp. 287–299.

    Article  Google Scholar 

  21. Kim, J.H., Lee, H.M., Cho, Y.G., et al., Flow cytometric characterization of the hemocytes of blood cockles Anadara broughtonii (Schrenck, 1867), Anadara kagoshimensis (Lischke, 1869), and Tegillarca granosa (Linnaeus, 1758) as a biomarker for coastal environmental monitoring, Mar. Pollut. Bull., 2020, vol. 160, p. 111654.

    Article  CAS  PubMed  Google Scholar 

  22. Kladchenko, E.S., Andreyeva, A.Y., and Kukhareva, T.A., Effect of ranged short-term hypoxia on functional and morphological parameters of hemocytes in the Pacific oyster Crassostrea gigas (Thunberg, 1793), J. Evol. Biochem. Physiol., 2022, vol. 58, no. 1, pp. 45–53.

    Article  CAS  Google Scholar 

  23. Kolyuchkina, G.A. and Ismailov, A.D., Morpho-functional characteristics of bivalve mollusks under the experimental environmental pollution by heavy metals, Oceanology, 2011, vol. 51, no. 5, pp. 804–813. https://doi.org/10.1134/S0001437011050092

    Article  Google Scholar 

  24. Matozzo, V., Aspects of eco-immunology in molluscs, Invertebrate Survival J., 2016, vol. 13, no. 1, pp. 116–121.

    Google Scholar 

  25. Mello, D.F., De Oliveira, E.S., Vieira, R.C., et al., Cellular and transcriptional responses of Crassostrea gigas hemocytes exposed in vitro to brevetoxin (PbTx-2), Mar. Drugs, 2012, vol. 10, no. 3, pp. 583–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mix, M.C., A general model for leukocyte cell renewal in bivalve mollusks, Mar. Fish. Rev., 1976, vol. 38, no. 10, pp. 37–41.

    Google Scholar 

  27. Nakahara, Y., Shimura, S., Ueno, C., et al., Purification and characterization of silkworm hemocytes by flow cytometry, Dev. Comp. Immunol., 2009, vol. 33, no. 4, pp. 439–448.

    Article  CAS  PubMed  Google Scholar 

  28. Novitskaya, V.N. and Soldatov, A.A., Peculiarities of functional morphology of erythroid elements of hemolymph of the bivalve mollusk Anadara inaequivalvis, the Black Sea, Hydrobiol. J., 2013, vol. 49, no. 6, pp. 64–71.

    Article  Google Scholar 

  29. Novoa, B. and Figueras, A., Immune responses in molluscs and their implications for disease control, in Infectious Disease in Aquaculture, Cambridge: Woodhead, 2012, pp. 88–110.

    Google Scholar 

  30. Ottaviani, E., Franchini, A. Barbieri, D., and Kletsas, D., Comparative and morphofunctional studies on Mytilus galloprovincialis hemocytes: Presence of two aging-related hemocyte stages, Ital. J. Zool., 1998, vol. 65, no. 4, pp. 349–354.

    Article  Google Scholar 

  31. Parisi, M.G., Mauro, M., Sara, G., and Cammarata, M., Temperature increases, hypoxia, and changes in food availability affect immunological biomarkers in the marine mussel Mytilus galloprovincialis, J. Comp. Physiol. B., 2017, vol. 187, no. 8, pp. 1117–1126.

    Article  CAS  PubMed  Google Scholar 

  32. Rebelo, M.F., Figueiredo, E.S., Mariante, R.M., et al., New insights from the oyster Crassostrea rhizophorae on bivalve circulating hemocytes, PLoS One, 2013, vol. 8, no. 2, p. e57384. https://doi.org/10.1371/journal.pone.0057384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodrick, G.E. and Ulrich, S.A., Microscopical studies on the hemocytes of bivalves and their phagocytic interaction with selected bacteria, Helgol. Wiss. Meeresunters., 1984, vol. 37, no. 1, pp. 167–176.

    Article  Google Scholar 

  34. Rosa, I.C., Garrido, R., Re, A., et al., Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: The role of dissolved oxygen conditions, Sci. Total Environ., 2015, vol. 536, pp. 825–830. https://doi.org/10.1016/j.scitotenv.2015.07.071

    Article  CAS  PubMed  Google Scholar 

  35. Travers, M.A., Da Silva, P.M., Le Goc, N., et al., Morphologic, cytometric and functional characterisation of abalone (Haliotis tuberculata) haemocytes, Fish Shellfish Immunol., 2008, vol. 24, no. 4, pp. 400–411.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, W., Li, M., Wang L., et al., The granulocytes are the main immunocompetent hemocytes in Crassostrea gigas, Dev. Comp. Immunol., 2017, vol. 67, pp. 221–228.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y., Zhou S., Liu T., et al., De novo transcriptome analysis of stressed blood clam (Anadara broughtonii) and identification of genes associated with hemoglobin, Genes Genomics, 2020, vol. 42, no. 2, pp. 189–202.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, L., Yang, A., Liu, Z., et al., Changes in hemolymph characteristics of ark shell Scapharca broughtonii dealt with Vibrio anguillarum challenge in vivo and various of anticoagulants in vitro, Fish Shellfish Immunol., 2017, vol. 61, pp. 9–15.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, L., Yang, A., Wang, Q., et al., Studies on the hemocytes types and their immunological functions in bloody clam (Scapharca broughtonii), J. Fish. China, 2013, vol. 37, no. 4, pp. 599–606.

    Article  Google Scholar 

  40. Zhou, L., Zhao, D., Wu, B., et al., Ark shell Scapharca broughtonii hemocyte response against Vibrio anguillarum challenge, Fish Shellfish Immunol., 2019, vol. 84, pp. 304–311. https://doi.org/10.1016/j.fsi.2018.09.039

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State assignment no. 121102500161-4 Regularities of the organization of the immune system of commercial aquatic organisms and the study of the influence of environmental factors on the function of their defense systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kladchenko.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of animals. The article does not contain any studies involving animals in experiments performed by any of the authors.

Additional information

Translated by I. Barsegova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kladchenko, E.S., Kukhareva, T.A., Rychkova, V.N. et al. Morphological Analysis of the Hemolymph Cell Composition in the Bivalve Mollusk Anadara broughtonii Schrenck, 1867 (Sea of Japan). Russ J Mar Biol 49, 200–208 (2023). https://doi.org/10.1134/S1063074023030082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074023030082

Keywords:

Navigation