Log in

Application of Laser Radiation for Control of RADAN Compact Pulse Generator

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract—

We presented the results of experimental and theoretical investigations of a plasma jet formed by YAG:Nd3+ laser radiation on an anode in a high-voltage gas gap. Conditions corresponding to the minimal instability of 0.3 ns and delay were experimentally found. The physical mechanisms determining the delay of the gas gap overlap by the plasma jet and the obtained instability level are discussed. A model of processes occurring on the ionization wavefront determined by the absorption/excitation of gas atoms and by the effects of a high-field domain was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Meyerand, R.G. and Haught, A.F., Phys. Rev. Lett., 1963, vol. 11, p. 401. https://doi.org/10.1103/PhysRevLett.11.401

    Article  CAS  ADS  Google Scholar 

  2. Pendleton, W.K. and Guenther, A.H., Rev. Sci. Instrum., 1965, vol. 36, p. 1546. https://doi.org/10.1063/1.1719388

    Article  CAS  ADS  Google Scholar 

  3. Alcock, A.J., Richardson, M.C., and Leopold, K., Rev. Sci. Instrum., 1970, vol. 41, p. 1028. https://doi.org/10.1063/1.1684689

    Article  ADS  Google Scholar 

  4. Simpson, S., Johns, O., Rose, C.E., Yalin, A., and Dumitrache, C., US Patent 10687412, 2020

  5. Viegas, P., Slickboer, E., Bonaventura, Z., Gaitella, O., Sobota, A., and Bourdon, A., Plasma Sources Sci. Technol., 2022, vol. 31, p. 053001. https://doi.org/10.1088/1361-6595/ac61a9

    Article  ADS  Google Scholar 

  6. Lipchak, A.I. and Barakhvostov, S.V., Instrum. Exp. Tech., 2021, vol. 64, p. 376. https://doi.org/10.1134/S0020441221030209

    Article  Google Scholar 

  7. Mesyats, G.A. and Yalandin, M.I., Phys.—Usp., 2005, vol. 48, p. 211. https://doi.org/10.1070/PU2005v048n03ABEH002113

    Article  ADS  Google Scholar 

  8. Raizer, Yu.P., Sov. Phys. Usp., 1966, vol. 8, p. 650. https://doi.org/10.1070/PU1966v008n05ABEH003027

    Article  ADS  Google Scholar 

  9. Oh, S., Singh, J., and Lim, C., Appl. Opt., 2014, vol. 53, p. 3593. https://doi.org/10.1364/AO.53.003593

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Lipchak, A.I., Barakhvostov, S.V., Volkov, N.B., Chingina, E.A., and Turmyshev, I.S., J. Phys.: Conf. Ser., 2021, vol. 2064, p. 012098. https://doi.org/10.1088/1742-6596/2064/1/012098

    Article  Google Scholar 

  11. Raether, H., Electron Avalanches and Breakdown in Gases, London: Butterworths, 1964.

    Google Scholar 

  12. Mesyats, G.A., Korovin, S.D., Rostov, V.V., Shpak, V.G., and Yalandin, M.I., Proc. IEEE, 2004, vol. 92, p. 1166. https://doi.org/10.1109/JPROC.2004.829005

    Article  Google Scholar 

  13. Normal distribution. https://en.wikipedia.org/wiki/ Normal_distribution.

  14. Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, New York: Pergamon, 1968.

    Google Scholar 

  15. Lipchak, A.I., Solomonov, V.I., Tel’nov, V.A., and Osipov, V.V., Quantum Electron., 1995, vol. 25, p. 347. https://doi.org/10.1070/QE1995v025n04ABEH000360

    Article  ADS  Google Scholar 

  16. Volkov, N.B., Chingina, E.A., and Yalovets, A.P., J. Phys.: Conf. Ser., 2016, vol. 774, p. 012147. https://doi.org/10.1088/1742-6596/774/1/012147

    Article  CAS  Google Scholar 

  17. Volkov, N.B., Tech. Phys. Lett., 2001, vol. 27, p. 236. https://doi.org/10.1134/1.1359838

    Article  CAS  ADS  Google Scholar 

  18. Raizer, Yu.P., Gas Discharge Physics, Berlin: Springer, 1991.

    Book  Google Scholar 

  19. Bobrov, Yu.K., Rukhadze, A.A., Guseyn-Zade, N.G., and Yurgelenas, Yu.V., Fizicheskie modeli i mekhanizmy elektricheskogo proboya gazov (Physical Models and Mechanisms of Electrical Breakdown of Gases), Moscow: Mosk. Gos. Univ., 2012.

  20. Martienssen, W. and Warlimont, H., Springer Handbook of Condensed Matter and Material Data, Berlin: Springer, 2005.

    Book  Google Scholar 

  21. Landau, L.D. and Lifshits, E.M., Statistical Physics, Part 1, Oxford: Pergamon, 1980.

    Google Scholar 

  22. Haken, H., Advanced Synergetics Instability Hierarchies of Self-Organizing Systems and Devices, Berlin: Springer, 1983.

    Book  Google Scholar 

  23. Volkov, N.B. and Iskoldsky, A.M., J. Phys. A: Math. Gen., 1995, vol. 28, p. 1789. https://doi.org/10.1088/0305-4470/28/7/00

    Article  ADS  Google Scholar 

Download references

Funding

The presented study was supported by the Russian Science Foundation and the Government of Sverdlovsk oblast, project no. 22-29-20058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Lipchak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipchak, A.I., Volkov, N.B., Turmyshev, I.S. et al. Application of Laser Radiation for Control of RADAN Compact Pulse Generator. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 2), S222–S227 (2023). https://doi.org/10.1134/S1062873823704646

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704646

Keywords:

Navigation