Log in

Peculiarities of the Mesonephros Cell Ultrastructure of the Prussian Carp Carassius gibelio (Cypriniformes, Cyprinidae) under Various Salinity Conditions

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The mesonephros ultrastructure has been studied for 12 specimens of sexually mature Carassius gibelio Bloch 1782 living in the freshwater Finogenov Pond and in the middle reaches of the Khara River (salinity of 6‰). Both reservoirs belong to the basin of the Volga River. A slight increase in the water salinity up to 6‰ primarily caused changes in the quantitative characteristics of leukocyte mitochondria and in all types of epithelial cells, as well as specialized types of inclusions in eosinophils, macrophages, proximal tubules type I, and distal tubules of the nephron. There were also changes in the nuclear structures of some types of interstitial cells and epitheliocytes. In the nephron tubules, epithelial cells of smaller sizes were registered, in the epithelial cells of the tubules, there was a more developed smooth endoplasmic reticulum, as well as a shorter brush border of the proximal tubule cells. As the water salinity increased, the area of the renal corpuscles, of glomerular capillaries, and of podocytes decreased, the thickness of the basement membrane and mass transfer in the renal corpuscles and tubules changed as well. Cytological rearrangements during the transition of the stenohaline freshwater species to brackish water testified to the high adaptive capacity of the cellular structures of the mesonephros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Birrer, S.C., Reusch, T.B., and Roth, O., Salinity change impairs pipefish immune defence, Fish Shellfish Immunol., 2012, no. 33 (6), pp. 1238–1248.

  2. Bryan, R., Cullen nuclear RNA export pathways, Mol. Cell. Biol., 2000, pp. 4181–4187.

  3. Burkova, T.N., Characteristics of phytoplankton of the highly mineralized Khara River, Izv. PGPU im. V.G. Belinskogo, 2011, no. 25, pp. 493–496.

  4. Elger, M. and Hentschel, H., The glomerulus of a stenohaline fresh-water teleost, Carassius auratus gibelio, adapted to saline water. a scanning and transmission electron-microscopic study, Cell Tissue Res., 1981, no. 220 (1), pp. 73–85.

  5. Eshonov, Kh.K.O., Structural and functional organization of nuclear pores, Materialy III Nauch.-prakt. konferentsii. Novoe v biologii i meditsine (Proc. III Sci. Pract. Conf. “New in Biology and Medicine”), 2018, pp. 85–92.

  6. Flerova, E.A., Kletochnaya organizatsiya pochek kostistykh ryb (na primere otryadov Cypriniformes i Perciformes) (Cellular Organization of the Kidneys of Teleost Fishes (by the Example of the Orders Cypriniformes and Perciformes)), Yaroslavl: Yarosl. Gos. S-kh. Akad., 2012.

  7. Flerova, E.A., Sendek, D.S., and Yurchenko, V.V., Specific features of the ultrastructure of mesonephros of smolts of the Atlantic salmon Salmo salar L. (Baltic Sea population) and brown trout Salmo trutta L., Inland Water Biol., 2020, vol. 13, no. 3, pp. 445–454.

    Article  Google Scholar 

  8. Folmar, L.C. and Dickhoff, W.W., The parr–smalt transformation (smoltification) and seawater adaptation in salmonids: a review of selected literature, Aquaculture, 1980, vol. 21, no. 1, pp. 1–37.

    Article  CAS  Google Scholar 

  9. Gusakov, V.A., Benthic meiofauna of highly mineralized rivers of the Eltonskii Natural Park (Russia), Zapov. Nauka, 2019, no. 4 (1), pp. 37–63.

  10. Kolpakov, N.V. and Milovankin, P.G., Distribution and seasonal changes in fish abundance in the estuary of the Razdol’naya River (Peter the Great Bay), Sea of Japan, J. Ichthyol., 2010, vol. 50, no. 6, pp. 445–459.

    Article  Google Scholar 

  11. Komoroske, L.M., Jeffries, K.M., Connon, R.E., Dexter, J., Hasenbein, M., Verhille, C., and Fangue, N.A., Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish, Evol. Appl., 2016, vol. 9, no. 8, pp. 963–981.

    Article  Google Scholar 

  12. Lessing, D., Anguera, M.C., and Lee, J.T., X chromosome inactivation and epigenetic responses to cellular reprogramming, Annu. Rev. Genom. Hum. Genet., 2013, no. 14, pp. 85–110.

  13. Maksimovich, A.A., Serkov, V.M., Zagal’skaya, E.O., and Kudra, A.A., Ultrastructure and function of proximal tubular cells of nephrons of pacific salmons adapted to environments with different salinity, J. Evol. Biochem. Physiol., 2000, vol. 36, no. 3, pp. 33–345.

    Google Scholar 

  14. Mazzarella, A.B., Voje, K.L., Hansson, T.H., Taugbøl., A., and Fischer, B., Strong and parallel salinity-induced phenotypic plasticity in one generation of three spine stickleback, J. Evol. Biol., 2015, vol. 28, no. 3, pp. 667–677.

    Article  CAS  Google Scholar 

  15. Mezhzherin, S.V. and Lisetskii, I.L., Genetic structure of carp populations (Cypriniformes, Cyprinidae, Carassius L. 1758) inhabiting water bodies of the Middle Dnepropetrovsk basin, Tsitol. Genet., 2004, no. 5, pp. 35–44.

  16. Natochin, Yu.V., Ion-reguliruyushchaya funktsiya pochki (Ion-Regulating Function of the Kidney), Leningrad: Nauka, 1976.

  17. Oğuz, A.R., A histological study of the kidney structure of van fish (Alburnus tarichi) acclimated to highly alkaline water and freshwater, Mar. Freshwater Behav. Physiol., 2015, vol. 48, no. 2, pp. 135–144.

    Article  Google Scholar 

  18. Sezaki, K., Kobayasi, H., and Nakamura, M., Size erythrocytes in the diploid and triploid specimens of Carassius auratus langsdorfi, Jpn. J. Ichthyol., 1977, vol. 24, no. 2, pp. 135–140.

    Google Scholar 

  19. Shatskikh, A.S. and Gvozdev, V.A., Heterochromatin formation and transcription in relation to trans-inactivation of genes and their spatial organization in the nucleus, Biochemistry (Moscow), 2013, vol. 78, no. 6, pp. 603–612.

    CAS  Google Scholar 

  20. Splinter, E., Wit, E., Nora, E.P., Klous, P., Werken, H.J.G., Zhu, Y., Kaaij, L.J.T., Ijcken, W., Gribnau, J., Heard, E., and Laat, W., The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on **st RNA, Genes Dev., 2011, vol. 25, no. 13, pp. 1371–1383.

    Article  CAS  Google Scholar 

  21. Sunde, J., Tamario, C., Tibblin, P., Larsson, P., and Forsman, A., Variation in salinity tolerance between and within anadromous subpopulations of pike (Esox lucius), Sci. Rep., 2018, vol. 8, no. 1, pp. 1–11.

  22. Timakova, T.K., Flerova, E.A., and Zabotkina, E.A., Metody svetovoi i elektronnoi mikroskopii v biologii i veterinarii: uchebno-metodicheskoe posobie (Methods of Light and Electron Microscopy in Biology and Veterinary Medicine: Teaching Aid.), Yaroslavl: Yarosl. Gos. S-kh. Akad., 2014.

  23. Tupikova, N.V., Sidorova, G.A., and Konovalova, E.A., Zakonomernosti formirovaniya populyatsionnoi struktury karpovykh ryb Volgo-Kaspiiskogo raiona (Patterns of the Formation of the Population Structure of Cyprinids in the Volga–Caspian Region), 1989, рр. 21–27.

  24. Verhille, C.E., Dabruzzi, T.F., Cocherell, D.E., Mahardja, B., Feyrer, F., Foin, T.C., Baerwald, M.R., and Fangue, N.A., Inter-population differences in salinity tolerance and osmoregulation of juvenile wild and hatchery-born Sacramento splittail, Conserv. Physiol., 2016, vol. 4, no. 1, pp. 1–12.

    Article  Google Scholar 

  25. Virabhadrachari, V., Structural changes in the gills, intestine, and kidney of Etroplus maculatus (Teleostei) adapted to different salinities, J. Cell Sci., 1961, vol. 3, no. 59, pp. 361–369.

    Article  Google Scholar 

  26. Yang, S., Tsai, J., Kang, C., Yang, W., Kung, H., and Lee, T., The ultrastructural characterization of mitochondria-rich cells as a response to variations in salinity in two types of teleostean pseudobranch: milkfish (Chanos chanos) and Mozambique tilapia (Oreochromis mossambicus), J. Morphol., 2017, vol. 278, no. 3, pp. 1–13.

    Article  Google Scholar 

  27. Zenkina, V.G. and Shevchuk, D.V., Changes in facultative heterochromatin in women in the age aspect, Fundam. Issled., 2015, no. 1, pp. 1831–1835.

  28. Zinchenko, T.D., Golovatyuk, L.V., and Abrosimova, E.V., Species diversity of benthic communities of saline rivers in extreme natural conditions of the arid cis-Elton region (review), Ross. Zh. Prikl. Ekol., 2017, no. 1 (9), pp. 14–21.

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.V. Lobus (Laboratory of Ocean Chemistry, Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia) for invaluable assistance in sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Flerova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flerova, E.A., Evdokimov, E.G. Peculiarities of the Mesonephros Cell Ultrastructure of the Prussian Carp Carassius gibelio (Cypriniformes, Cyprinidae) under Various Salinity Conditions. Biol Bull Russ Acad Sci 49, 1024–1036 (2022). https://doi.org/10.1134/S1062359022080064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022080064

Keywords:

Navigation