Log in

To the Justification of the Effectiveness of Future Mathematics in the New Biology

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

A list of selected phenomena characterizing living systems on the main levels of the manifestation of life is considered. As a result of directed interpretation of these phenomena, life (in becomming of earthly reality) appears as an informational physico-mathematical process that solves the problem of optimal relations of its variability and heredity in a changing environment. Practical solutions found by living systems in the course of evolution can be used and are used in applied mathematics as approaches of working with information. Genetic and quantum algorithms, neural networks, annealing are important milestones of this use. On this way, mathematics discovers an unexpected efficiency in working with big data arrays, which represent the main content of modern biology.

DOI 10.1134/S1061920822040082

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”, Comm. Pure Appl. Math., 131 (1960), 1–14.

    Article  ADS  MATH  Google Scholar 

  2. V. I. Arnold, “On Teaching Mathematics”, Russ. Math. Surveys, 53:1 (1998), 229–236.

    Article  ADS  MATH  Google Scholar 

  3. P. C. W. Davies, “Does Quantum Mechanics Play a Non-trivial Role in Life?”, BioSystems, 78 (2004), 69–79.

    Article  Google Scholar 

  4. V. Fock, “Konfigurationsraum und zweite Quantelung”, Z. Physik, 75 (1932), 622–647.

    Article  ADS  MATH  Google Scholar 

  5. V. P. Maslov, “On a General Theorem of Set Theory Leading to the Gibbs, Bose–Einstein, and Pareto Distributions as well as to the Zipf–Mandelbrot Law for the Stock Market”, Math. Notes, 78:6 (2005), 807–813.

    Article  MATH  Google Scholar 

  6. J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, Urbana and London, 1966.

    Google Scholar 

  7. J. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA, 1992.

    Book  Google Scholar 

  8. W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity”, Bull. Math. Biophys., 5 (1943), 115–133.

    Article  MATH  Google Scholar 

  9. O. Caramello, “The Unification of Mathematics via Topos Theory”, r**v:1006.3930 [math.CT] 2010.

  10. V. Voevodsky, “An Experimental Library of Formalized Mathematics Based on the Univalent Foundations”, Math. Structures Comput. Sci., 25:5 (2015), 1278–1294.

    Article  MATH  Google Scholar 

  11. E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge University Press, 2003.

    Book  MATH  Google Scholar 

  12. M. Gromov, Interview, Rigas Laiks 1, 2014.

    Google Scholar 

  13. D. W. Thompson, On Growth and Form, Cambridge University Press, Cambridge, 1992.

    Book  Google Scholar 

  14. D. J. Taylor, N. P. O. Green, G. W. Staut, and R. Soper, Biological Science 1 & 2, Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  15. L. von Bertalanffy, “The Theory of Open Systems in Physics and Biology”, Science, 111:2872 (1950), 23–29.

    Article  ADS  Google Scholar 

  16. R. P. Feynman, QED: The Strange Theory of Light and Matter, Penguin Books, 1990.

    Google Scholar 

  17. R. Rosen, Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life, Columbia University Press, New York, 1991.

    Google Scholar 

  18. L. Brillouin, Science and Information Theory, Dover Publications, 2013.

    MATH  Google Scholar 

  19. S. A. Kauffman, “The Adjacent Possible”, Life: The Leading Edge of Evolutionary Biology, Genetics, Anthropology, and Environmental Science, Harper Perennial, (2016), 358–360.

    Google Scholar 

  20. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley-Interscience, NewYork, 1977.

    MATH  Google Scholar 

  21. I. Prigogine and I. Stengers, Order Out of Chaos: Man’s New Dialogue with Nature, Heinemann, London, 1984.

    Google Scholar 

  22. S. J. Gould, Ontogeny and Phylogeny (The Belknap Press of Harvard University Press), Cambridge, 1977.

    Google Scholar 

  23. J. Lovelock, Novacene: The Coming Age of Hyperintelligence, The MIT Press, 2019.

    Google Scholar 

  24. P. P. Amaral, M.E. Dinger, T. R. Mercer, and J. S. Mattick, The Eukaryotic Genome as an RNA Machine, vol. 319, Science, 2008.

    Google Scholar 

  25. C. Shannon, “A Mathematical Theory of Communication”, The Bell System Technical Journal, 27:3 (1948), 379–423, 623–656.

    Article  MATH  Google Scholar 

  26. N. Chomsky, Topics in the Theory of Generative Grammar, 1972.

    Google Scholar 

  27. D. Cram, “Preorganization – From Solvents to Spherands”, Angewandte Chemie-international Edition, 25:12 (1986), 1039–1057.

    Article  Google Scholar 

  28. V. Vanchurin, Yu. I. Wolf, E. V. Koonin, and M. I. Katsnelson, Thermodynamics of Evolution and the Origin of Life, PNAS 119(6) e2120042119, 2022.

    Book  Google Scholar 

  29. J. Huxley, Evolution: The Modern Synthesis, Harper and Brothers, 1943.

    Google Scholar 

  30. G. Mendel, “Versuche Uber Plflanzenhybriden”, Verhandlungen des naturforschenden Vereines in Brunn, 4 (1866), 3–47.

    Google Scholar 

  31. J. A. Wheeler, “Information, Physics, Quantum: The Search for Links”, in Proceedings III International Symposium on Foundations of Quantum Mechanics, (1989), 354–358.

    Google Scholar 

  32. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2011.

    MATH  Google Scholar 

  33. S. L. Nuismer, B. Week, and L. J. Harmon, “Uncovering Cryptic Coevolution”, The American Naturalist, 199:6 (2022), 869–880.

    Article  Google Scholar 

  34. W. J. Ripple, C. Wolf, T. M. Newsome, M. Galetti, M. Alamgir, E. Crist, M.I. Mahmoud, W.F. Laurance, 15,364 scientist signatories from 184 countries, “World Scientists’ Warning to Humanity: A Second Notice”, BioScience, 67:12 (2017), 1026–1028.

    Article  Google Scholar 

  35. Yu. N. Zhuravlev, M. A. Guzev, and A. I. Gudimenko, “Protein Synthesis as an Object of Physical and Mathematical Research and Modeling”, Siberian Electronic Mathematical Reports, 16 (2019), 340–368.

    MATH  Google Scholar 

  36. V. P. Maslov, “Violation of the Determinacy Principle of Nonstationary Equations of Two- and Three-dimensional Gas Dynamics for Sufficiently Large Reynolds Numbers”, Theor. Math. Phys., 69 (1986), 1202–1212.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Zhuravlev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzev, M.A., Zhuravlev, Y.N. To the Justification of the Effectiveness of Future Mathematics in the New Biology. Russ. J. Math. Phys. 29, 500–507 (2022). https://doi.org/10.1134/S1061920822040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920822040082

Navigation