Log in

Ultrasonic and Mechanical Characterization of Borided Ceramic–Metal Composite

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

In this study, composite samples were produced using Ni, Co, and WC powders at different sintering temperatures by pack boronizing and powder metallurgy method. Prepared composites were boronized in commercial Ekabor®-2 powder between 1000 and 1400°C for 2 and 6 h using the pack boronizing method. Using the powder metallurgy method, all powders were sintered in the tube furnace under argon shroud at the same temperature range. Ultrasonic velocity, ultrasonic attenuation and Young’s modulus values were determined by using the pulse-echo method, which is one of the non-destructive testing methods. Transverse and longitudinal ultrasonic velocities and density were used to calculate the Young’s modulus of these samples. Ultrasonic properties such as ultrasonic velocity, ultrasonic attenuation and Young’s modulus and mechanical properties such as microhardness and density showed a linear relationship with the sintering temperature. SEM (scanning electron microscopy), EDX (energy dispersive X-ray spectroscopy) analysis was performed to characterize the properties of Ni–Co–WC ceramic composite samples. The relative effects of the surface images and microstructural changes of the samples prepared at different temperatures and different methods on the ultrasonic attenuation and velocity were investigated in Ni–Co–WC composite samples. As the sintering temperature increased, microhardness and density values of the composite samples also increased. The X-ray analyzes showed that the phases in the produced composites were successfully made in both methods. In addition, the experimental results of the composites obtained by the pack boronizing method increased linearly as the sintering temperature increased compared to the powder metallurgy method. The surface hardness of the material obtained in the boriding process increased approximately 4.5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kursawe, S., Pott, Ph., Sockel, H.G., et al., On the influence of binder content and binder composition on the mechanical properties of hard metals, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, p. 335.

    Article  CAS  Google Scholar 

  2. Genga, R.M., Cornish, L.A., and Akdoğan, G., Effect of Mo2C additions on the properties of SPS manufactured WC–TiC–Ni cemented carbides, Int. J. Refract. Met. Hard Mater., 2013, vol. 41, p. 12.

    Article  CAS  Google Scholar 

  3. Guo, Z., **ong, J., Yang, M., et al., Effect of Mo2C on the microstructure and properties of WC–TiC–Ni cemented carbide, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, p. 601.

    Article  CAS  Google Scholar 

  4. Xu, P.Q., Dissimilar welding of WC–Co cemented carbide to Ni42Fe50.9C0.6Mn3.5Nb3 invar alloy by laser–tungsten inert gas hybrid welding, Mater. Des., 2011, vol. 32, p. 229.

    Article  Google Scholar 

  5. Laptev, A.V., Ponomarev, S.S., and Ochkas, L.F., Structural features and properties of alloy 84%WC-16%Co, obtained by solid-phase and liquid-phase hot pressing JJ. Influence of the temperature at which the specimens are made on their physicomechanical properties, Powder Metall. Met. Ceram., 2001, vol. 40, nos. 1—2, pp. 77–83.

    Article  CAS  Google Scholar 

  6. Carol, D.F., Sintering and microstructural development in WC/Co based alloys made with superfine WC powder, Int. J. Refract. Met. Hard Mater., 1999, vol. 17, pp. 123–132.

    Article  Google Scholar 

  7. Kear, B.H. and McCandlish, L.E., Chemical processing and properties of nanostructured WC–Co materials, Nanostruct. Mater., 1993, vol. 3, pp. 19–30.

    Article  CAS  Google Scholar 

  8. Gao, L. and Kear, B.H., Low temperature carburization of high surface area tungsten powders, Nanostruct. Mater., 1995, vol. 5, pp. 555–569.

    Article  CAS  Google Scholar 

  9. Choi, K., Hwang, N.M., and Kim, D.Y., Effect of VC addition on microstructural evolution of WC–Co alloy: Mechanism of grain growth inhibition, Powder Metall., 2000, vol, 43, pp. 168–172.

    Article  CAS  Google Scholar 

  10. Pereira, P., Vilhena, L.M., Sacramento, J., et al., Abrasive wear resistance of WC-based composites produced with Co or Ni-rich binders, Wear, 2021, vol. 482—483, p. 203924.

    Article  Google Scholar 

  11. Manohar, G., Pandey, K.M., and Maity, S.R., Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques, Ceram. Int., 2021, vol. 47, pp. 15147–15154.

    Article  CAS  Google Scholar 

  12. Zawrah, M.F., Synthesis and characterization of WC–Co nanocomposites by novel chemical method, Ceram. Int., 2007, vol. 33, pp. 155–161.

    Article  CAS  Google Scholar 

  13. Özkan, V., Sarpün, İ.H., Erol, A., et al., Influence of mean grain size with ultrasonic velocity on micro-hardness of B4C–Fe–Ni composite, J. Alloys Compd., 2013, vol. 574, pp. 512–519.

    Article  Google Scholar 

  14. Shang, W., Zhan, X., Wen, Y., et al., Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy, Chem. Eng. Sci., 2019, vol. 207, pp. 1299–1308.

    Article  CAS  Google Scholar 

  15. Yönetken, A. and Erol, A., Investigation of mechanical properties of boronized composites produced by electroless Ni coating, J. Miner. Metal Mater. Eng., 2020, vol. 6, pp. 1–6.

    Google Scholar 

  16. Kayali, Y. and Yönetken, A., Investigation of wear behaviours of borided materials produced by the powder metallurgy method in different compositions, Prot. Met. Phys. Chem. Surf., 2021, vol. 57, pp. 771–778.

    Article  Google Scholar 

  17. Kul, M., Danacı, I., Gezer, Ş., et al., Effect of boronizing composition on hardness of boronized AISI 1045 steel, Mater. Lett., 2020, vol. 279, p. 128510.

    Article  CAS  Google Scholar 

  18. Hongsheng, C., Keqin, F., Ji, X., et al., Characterization and forming process of a functionally graded WC–Co/Ni composite, Int. J. Refract. Met. Hard Mater., 2012, vol. 35, p. 306.

    Article  Google Scholar 

  19. Mohammadzadeh, H., Rezaie, H., Samim, H., et al., Synthesis of WCNi composite powders by thermochemical processing method based on co-precipitation, Mater. Chem. Phys., 2015, vol. 149–150, p. 145.

    Article  Google Scholar 

  20. Fernandes, C.M., Senos, A.M.R., Vieira, M.T., et al., Mechanical characterization of composites prepared from WC powders coated with Ni rich binders, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, p. 491.

    Article  CAS  Google Scholar 

  21. Voitovich, V.B., Sverdel, V.V., Voitovich, R.F., et al., Oxidation of WC–Co, WC–Ni, and WC–Co–Ni hard metals in the temperature range 500–800°C, Int. J. Refract. Met. Hard Mater., 1996, vol. 14, p. 289.

    Article  CAS  Google Scholar 

  22. Zhang, Q., Wul, M., and Wen, Z., Electroless nickel plating on hollow glass microspheres, Surf. Coat. Technol., 2005, vol. 192, p. 213.

    Article  CAS  Google Scholar 

  23. Krishnaveni, K., Sankara, N., and Seshadri, S.K., Electrodeposited Ni–B coatings: Formation and evaluation of hardness and wear resistance, Mater. Chem. Phys., 2006, vol. 99, p. 300.

    Article  CAS  Google Scholar 

  24. Shon, I.J., Jeong, I.K., Ko, I.Y., et al., Sintering behavior and mechanical properties of WC–10Co, WC–10Ni and WC–10Fe hard materials produced by high-frequency induction heated sintering, Ceram. Int., 2009, vol. 35, p. 339.

    Article  CAS  Google Scholar 

  25. Guo, J., Fang, Z.Z., Fan, P., et al., Kinetics of the formation of metal binder gradient in WC–Co by carbon diffusion induced liquid migration, Acta Mater., 2011, vol. 59, p. 4719.

    Article  CAS  Google Scholar 

  26. Wang, Y. and Xu, Z., Nanostructured Ni–WC–Co composite coatings fabricated by electrophoretic deposition, Surf. Coat. Technol., 2006, vol. 200, p. 3896.

    Article  CAS  Google Scholar 

  27. Goeuriot, P. and Thevenot, F., Boron as sintering additive in cemented WC–Co (or Ni) alloys, Ceram. Int., 1987, vol. 13, p. 99.

    Article  CAS  Google Scholar 

  28. Sinha, A.K., Boriding (boronizing), in ASM Int. Handbook, Vol. 4, Materials Park, OH, USA: Mater. Int. Soc., 1991, pp. 437–447.

    Google Scholar 

  29. Roumiana, S.P., Naruemon, S., and Veljko, S., The effect of boronizing on metallic alloys for automotive applications, J. Mater. Eng. Perform., 2008, vol. 17, pp. 340–345.

    Article  Google Scholar 

  30. Kayalı, Y., Kutu Borlama yöntemiyle borlanmış hardox çeliklerinin yüzey özelliklerinin incelenmesi, 4th Int. Conf. Eng. Appl. Sci. (ICETAS), (Kiev, Ukraine, 2019), pp. 44–47.

  31. Meric, C., Sahin, S., Backir, B., and Koksal, N.S., Investigation of the boronizing effect on the abrasive wear behavior in cast irons, Mater. Des., 2006, vol. 27, pp. 751–757.

    Article  CAS  Google Scholar 

  32. Palanichamy, P., Mathew, M.D., Latha, S., et al., Assessing microstructural changes in alloy 625 using ultrasonic waves and correlation with tensile properties, Scr. Mater., 2001, vol. 45, pp. 1025–1030.

    Article  CAS  Google Scholar 

  33. Martin, L.P. and Rosen, M., Correlation between surface area reduction and ultrasonic velocity in sintered zinc oxide powders, J. Am. Ceram. Soc., 1997, vol. 80, pp. 839–846.

    Article  CAS  Google Scholar 

  34. Eren Gültekin, E., The effect of heating rate and sintering temperature on the elastic modulus of porcelain tiles, Ultrasonics, 2018, vol. 83, pp. 120–125.

    Article  Google Scholar 

  35. Özkan Bilici, V., Yönetken, A., and Erol, A., Investigation of microstructure and ultrasonic velocity relationship of borided and non-borided Ti–Co–Cr composites, 4th Int. Conf. Eng. Appl. Sci. (ICETAS), (Kiev, Ukraine, 2019).

  36. Kulkarni, N., Moudgil, B., and Bhardwaj, M., Ultrasonic characterization of green and sintered ceramics: I, Time domain, Am. Ceram. Soc. Bull., 1994, vol. 73, pp. 146–153.

    CAS  Google Scholar 

  37. Mason, W. and McSkimmin, H., Attenuation and scattering of high frequency sound waves in metals and glasses, J. Acoust. Soc. Am., 1947, vol. 19, no. 3, Melville, NY: Am. Inst. Phys. for Acoust. Soc. Am., pp. 464–473.

  38. Ozer, A., The microstructures and mechanical properties of Al–15Si–2.5Cu–0.5Mg/(wt%) B4C composites produced through hot pressing technique and subjected to hot extrusion, Mater. Chem. Phys., 2016, vol. 183, pp. 288–296.

    Article  CAS  Google Scholar 

  39. Yao, X., Zheng, Y.F., Liang, J.M., et al., Microstructures and tensile mechanical properties of an ultrafine grained AA6063–5 vol % SiC metal matrix nano composite synthesized by powder metallurgy, Mater. Sci. Eng., 2015, vol. A648, pp. 225–234.

    Article  Google Scholar 

  40. Tosun, G. and Kurt, M., The density variation of metal matrix Al2O3 / Al–Mg composite depend on production parameters, Fırat Üni. Müh. Bil. Der., 2019, vol. 31, pp. 21–28.

    Google Scholar 

  41. Hunger, H.J. and Trute, G., Boronizing to produce wear-resistant surface layers, Heat Treat. Met., 1994, vol. 2, pp. 31–39.

    Google Scholar 

  42. Fichtl, W., Trausner, N., and Matuschka, A.G., Boronizing with Ekabor, Elektroschmelzwerk Kempten GmbH, 1987.

    Google Scholar 

  43. Er, Ü. and Par, B., The investigation on abrasive wear resistance of surface hardened AISI 1030 and AISI 1050 steels by boronizing, Eng. & Arch. Fac. Osmangazi Univ., 2004, vol. 27, no. 1.

  44. Matik, U., The Influence of heat-treatment on hardness and structural characteristics of electroless Ni–B deposited ferrous powder metal compacts. Part C, GU J. Sci., 2017, vol. 5, pp. 223–230.

    Google Scholar 

  45. Dil, G., Gökşenli, A., Yüksel, B., et al., Analysis of the effect of heat treatment on corrosion resistance of electroless Ni–B/Ni–B–W dublex coating, BSEU J. Sci., 2020, vol. 7, pp. 911–922.

    Google Scholar 

  46. Guo, J., Hou, Y., Li, B., et al., Morphology-controlled synthesis of NiB nanoparticles by addition of hydrogen peroxide, Mater. Lett., 2017, vol. 200, pp. 90–93.

    Article  CAS  Google Scholar 

  47. Tarragó, J.M., Roa, J.J., Valle, V., et al., Fracture and fatigue behavior of WC–Co and WC–CoNi cemented carbides, Int. J. Refract. Met. Hard Mater., 2015, vol. 49, p. 184.

    Article  Google Scholar 

  48. Yaohong, X., Keqin, F., Hongsheng, C., et al., Fabrication and micro-structure of a multilayer functionally graded (WC–Co)–Ni composite, J. Alloys Compd., 2015, vol. 631, p. 77.

    Article  Google Scholar 

  49. Musil, J., Kunc, F., Zeman, H., et al., Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings, Surf. Coat. Technol., 2002, vol. 154, p. 304.

    Article  CAS  Google Scholar 

  50. Yuan, Z., Li, F., Zhang, P., et al., Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments, Chin. J. Aeronaut., 2014, vol. 27, p. 397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmet Yönetken or Vildan Özkan Bilici.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yönetken, A., Bilici, V.Ö. Ultrasonic and Mechanical Characterization of Borided Ceramic–Metal Composite. Russ J Nondestruct Test 58, 779–789 (2022). https://doi.org/10.1134/S1061830922090091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922090091

Keywords:

Navigation