Log in

Effect of Proton Irradiation on the Optical Properties and Defect Formation in Gd3AlxGa5 – xO12 (x = 2, 3) Crystals

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of proton irradiation with a dose of 50 Mrad (Si) on the optical properties and defect formation in crystals of gadolinium–aluminum–gallium garnet is studied during the substitution of aluminum and gallium in the cation sublattice: Gd3Al2Ga3O12 (Al : Ga = 2 : 3) and Gd3Al3Ga2O12 (Al : Ga = 3 : 2). After irradiation with protons, the crystals change color: an additional absorption band appears in the spectrum of each crystal in the wavelength range of 400–500 nm. This is due to the formation of induced structural defects in the form of color centers. The refractive indices n(λ) are determined by the Brewster spectrophotometric method and barely change for Al : Ga = 2 : 3 crystals, but largely increase for Al : Ga = 3 : 2. In the spectral dependences, there is a noticeable increase in the attenuation of light, which also indicates the formation of additional structural defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. A. Blistanov, Quantum and Nonlinear Optics Crystals: Textbook (Mosk. Inst. Stali Splavov, Moscow, 2007) [in Russian].

    Google Scholar 

  2. A. A. Kaminskii, Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  3. A. A. Kaminskii, Laser Crystals (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  4. P. Dorenbos, Radiation Detectors for Medical Applications (Springer, New York, 2006), p. 191. https://doi.org/10.1007/1-4020-5093-3_8

  5. P. Lecoq, Nucl. Instrum. Methods Phys. Res., Sect. A 809, 130 (2016). https://doi.org/10.1016/j.nima.2015.08.041

    Article  CAS  Google Scholar 

  6. Y. Sato, Y. Terasaka, W. Utsugi, H. Kikuchi, H. Kiyooka, and T. Torii, J. Nucl. Sci. Technol. 55, 965 (2018). https://doi.org/10.1080/00223131.2019.1581111

    Article  CAS  Google Scholar 

  7. M. Korzhik, V. Alenkov, O. Buzanov, A. Fedorov, G. Dosovitskiy, L. Grigorjeva, V. Mechinsky, P. Sokolov, Ya. Tratsiak, A. Zolotarjovs, V. Dormenev, A. Dosovitskiy, D. Agrawal, T. Anniyev, M. Vasilyev, and V. Khabashesku, Crystal Res. Technol. 54, 1800172 (2019). https://doi.org/10.1002/crat.201800172

    Article  CAS  Google Scholar 

  8. V. Alenkov, O. Buzanov, G. Dosovitskiy, V. Egorychev, A. Fedorov, A. Golutvin, Yu. Guz, R. Jacobsson, M. Korjik, D. Kozlov, V. Mechinsky, A. Schopper, A. Semennikov, P. Shatalov, and E. Shmanin, Nucl. Instrum. Methods Phys. Res., Sect. A 916, 226 (2019). https://doi.org/10.1016/j.nima.2018.11.101

    Article  CAS  Google Scholar 

  9. L. Martinazzoli, IEEE Trans. Nucl. Sci. 67, 1003 (2020). https://doi.org/10.1109/TNS.2020.2975570

    Article  CAS  Google Scholar 

  10. G. Dilillo, R. Campana, N. Zampa, F. Fuschino, G. Pauletta, I. Rashevskaya, F. Ambrosino, M. Baruzzo, D. Cauz, D. Cirrincione, M. Citossi, G. D. Casa, B. D. Ruzza, G. Galgóczi, C. Labanti, Yu. Evangelista, J. Ripa, A. Vacchi, F. Tommasino, E. Verroi, and F. Fiore, Proc. SPIE 11444, 1144493 (2020). https://doi.org/10.1117/12.2561053

    Article  Google Scholar 

  11. J. Komar, P. Solarz, A. Jeżowski, M. Głowacki, M. Berkowski, and W. Ryba-Romanowski, J. Alloys Compd. 688, 96 (2016). https://doi.org/10.1016/j.jallcom.2016.07.139

    Article  CAS  Google Scholar 

  12. H. Kimura and A. Miyazaki, Jpn. J. Appl. Phys. 41, 5334 (2002). https://doi.org/10.1143/JJAP.41.5334

    Article  CAS  Google Scholar 

  13. K. Bartosiewicz, A. Markovskyi, T. Horiai, D. Szymański, S. Kurosawa, A. Yamaji, A. Yoshikawa, and Y. Zorenko, J. Alloys Compd. 905, 164154 (2022). https://doi.org/10.1016/j.jallcom.2022.164154

    Article  CAS  Google Scholar 

  14. S. T. Konabeevskii, The Effect of Irradiation on Materials: Introduction to Radiation Materials Science (Atomizdat, Moscow, 1967) [in Russian].

    Google Scholar 

  15. E. V. Zharikov, I. I. Kuratev, V. V. Laptev, S. P. Nasel’skii, A. I. Ryabov, G. N. Toropkin, A. V. Shestakov, and I. A. Shcherbakov, Izv. Akad. Nauk SSSR, Ser. Fiz. 48, 1351 (1984).

    CAS  Google Scholar 

  16. A. O. Matkovskii, D. Yu. Sugak, U. A. Ulmanis, and V. G. Savitskii, Color Centers in Rare Earth Gallium Garnets (Inst. Fiz. Akad. Nauk LatSSR, Salaspils, 1987) [in Russan].

  17. V. M. Kasimova, N. S. Kozlova, O. A. Buzanov, E. V. Zabelina, P. B. Lagov, and Yu. S. Pavlov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 1259 (2021). https://doi.org/10.1134/S1027451021060318

    Article  CAS  Google Scholar 

  18. P. Lagov, A. Drenin, and M. Zinovjev, J. Phys.: Conf. Ser. 830, 012152 (2017). https://doi.org/10.1088/17426596/755/1/011001

    Article  Google Scholar 

  19. V. Van A. LintJ., G. Gigas, and J. Barengolt, IEEE Trans. Nucl. Sci., 22, 2663 (1975). https://doi.org/10.1109/TNS.1975.4328186

    Article  Google Scholar 

  20. E. V. Zabelina, N. S. Kozlova, Zh. A. Goreeva, and V. M. Kasimova, Russ. Microelectron. 49, 617 (2020). https://doi.org/10.1134/S1063739720080120

    Article  CAS  Google Scholar 

  21. GOST (State Standard) 3520-92: Materials. Optical Methods for Determination of Linear Attenuation Coefficient (Moscow, 1992).

  22. O. Sakthong, W. Chewpraditkul, C. Wanarak, J. Pejchal, K. Kamada, A. Yoshikawa, G. P. Pazzi, and M. Nikl, Opt. Mater. 36, 568 (2013). https://doi.org/10.1016/j.optmat.2013.10.033

    Article  CAS  Google Scholar 

  23. A. Pujats and M. Springis, Radiat. Eff. Defects Solids. 155, 65 (2001). https://doi.org/10.1080/10420150108214094

    Article  CAS  Google Scholar 

  24. A. N. Orlova Candidate’s Dissertation in Mathematics and Physics (Tver State Univ., Tver, 2007).

  25. V. Kasimova, N. Kozlova, O. Buzanov, and E. Zabelina, AIP Conf. Proc. 2308, 020003 (2020). https://doi.org/10.1063/5.0035129

    Article  CAS  Google Scholar 

  26. V. M. Kasimova, N. S. Kozlova, O. A. Buzanov, E. V. Zabelina, A. V. Targonskii, and A. V. Rogachev, Inorg. Mater. 58, 288 (2022). https://doi.org/10.1134/S0020168522030062

    Article  CAS  Google Scholar 

Download references

Funding

Studies of optical properties were carried out at the Interdepartmental Educational-Testing Laboratory of Semiconductor and Dielectric Materials “Single Crystals and Stock on Their Basis” National University of Science and Technology “MISIS” with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of State Assignment for universities FSME-2023-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kasimova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasimova, V.M., Kozlova, N.S., Zabelina, E.V. et al. Effect of Proton Irradiation on the Optical Properties and Defect Formation in Gd3AlxGa5 – xO12 (x = 2, 3) Crystals. J. Surf. Investig. 18, 58–62 (2024). https://doi.org/10.1134/S1027451024010105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010105

Keywords:

Navigation