Log in

Field-Frequency Variation during Plasma-Chemical Deposition of Silicon–Carbon Films as a Method for Their Structural Modification

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The influence of the electric-field frequency in the range from 0.1 to 2.0 MHz during the plasma-chemical deposition of diamond-like silicon–carbon films on their chemical composition, structure, and electrical properties is studied. It is shown that the films obtained in the entire studied frequency range have an amorphous structure with a constant, within the measurement accuracy, chemical composition. At the same time, the morphology of the surface of the films and their electrophysical properties significantly depend on the frequency of the electric field during plasma-chemical deposition. This makes it possible to use the change in the field frequency in the preparation of films as a method for controlling their properties. The frequency range providing the most effective modification of the electrophysical properties is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Meskinis and A. Tamuleciene, Mater. Sci. (Medziagotyra) 17, 358 (2011). https://doi.org/10.5755/j01.ms.17.4.770

    Article  Google Scholar 

  2. M. L. Shupegin, Zavod. Lab., Diagn. Mater. 79, 28 (2013).

    CAS  Google Scholar 

  3. A. Popov, Disordered Semiconductors: Physics and Applications, 2nd ed. (Jenny Stanford, New York, 2018). https://doi.org/10.1201/b22346

  4. M. Yu. Presniakov, A. I. Popov, D. S. Usol’tseva, M. L. Shupegin, and A. L. Vasiliev, Nanotechnol. Russ. 9, 518 (2014). https://doi.org/10.1134/S1995078014050139

    Article  CAS  Google Scholar 

  5. C. Vencatraman, A. Goel, R. Lei, D. Kester, and C. Outten, Thin Solid Films 308–309, 173 (1997). https://doi.org/10.1016/S0040-6090(97)00384-2

    Article  Google Scholar 

  6. S. M. Pimenov, E. V. Zavedeev, N. R. Arutyunyan, O. S. Zilova, A. D. Barinov, M. Yu. Presniakov, M. L. Shupegin, Surf. Coat. Technol. 402, 126300 (2020). https://doi.org/10.1016/j.surfcoat.2020.126300

    Article  CAS  Google Scholar 

  7. A. D. Barinov, A. I. Popov, M. Yu. Presnyakov, Inorg. Mater. 53, 690 (2017). https://doi.org/10.1134/S0020168517070019

    Article  CAS  Google Scholar 

  8. A. I. Popov, V. P. Afanas’ev, A. D. Barinov, Yu. N. Bodisko, A. S. Gryazev, I. N. Miroshnikova, M. Yu. Presnyakov, and M. L. Shupegin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 832 (2019). https://doi.org/10.1134/S1027451019050124

    Article  CAS  Google Scholar 

  9. A. I. Popov, A. D. Barinov, V. M. Emets, R. A. Kastro Arta, A. V. Kolobov, A. A. Kononov, A. V. Ovcharov, and T. S. Chukanova, Phys. Solid State 64, 85 (2022). https://doi.org/10.1134/S1063783422010164

    Article  CAS  Google Scholar 

  10. A. D. Barinov, A. I. Popov, and A. A. Makarov, in Proc. 31st Eur. Modeling and Simulation Symposium, Ed. by M. Affenzeller, A. G. Bruzzone, F. Longo, and G. Pereira (Lisbon, 2019), p. 42.

  11. W. J. Yang, Y.-H. Choa, and T. Sekino, Mater. Lett. 57, 3305 (2003). https://doi.org/10.1016/S0167-577X(03)00053-3

    Article  CAS  Google Scholar 

  12. A. I. Popov, A. D. Barinov, V. M. Emets, T. S. Chukanova, and M. L. Shupegin, Phys. Solid State 62, 1780 (2020). https://doi.org/10.1134/S1063783420100261

    Article  CAS  Google Scholar 

  13. A. D. Barinov, T. D. Gurinovich, A. I. Popov, T. S. Chukanova, M. A. Shapetina, and M. L. Shupegin, Inorg. Mater. 56, 799 (2020). https://doi.org/10.1134/S0020168520080026

    Article  CAS  Google Scholar 

  14. E. V. Zavedeev, O. S. Zilova, and A. D. Barinov, Diamond Relat. Mater. 74, 45 (2017). https://doi.org/10.1016/j.diamond.2017.02.003

    Article  CAS  Google Scholar 

  15. B. G. Budagyan, A. A. Sherchenkov, A. E. Berdnikov, and V. D. Chernomordik, Russ. Microelectron. 29, 391 (2000). https://doi.org/10.1023/A:1026640119204

    Article  CAS  Google Scholar 

  16. A. A. Sherchenkov, Mater. Elektron. Tekh. 1, 48 (2003).

    Google Scholar 

  17. T. Yamaguchi, N. Sakamoto, and H. Tagashira, J. Appl. Phys. 83, 554 (1998). https://doi.org/10.1063/1.366722

    Article  CAS  Google Scholar 

  18. M. Shimozuma, K. Kitamori, H. Ohno, H. Hasegawa, and H. J. Tagashira, Electron. Mater. 14, 573 (1985).

    Article  CAS  Google Scholar 

  19. One-dimensional roughness parameters, Gwyddion User Guide. http://gwyddion.net/documentation/user-guide-ru/roughness-iso.html.

  20. S. G. Lakeev, P. I. Misurkin, Yu. S. Polyakov, S. F. Timashev, et al., Fluctuation and Degradation Processes in Semiconductor Devices (Metrology, Diagnostics, Technology, Educational Process): Collection of Scientific Papers (Mosk. Energ. Inst., Moscow, 2011), p. 5.

    Google Scholar 

  21. N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Materials, 2 vols. (Clarendon, Oxford, 1979; Mir, Moscow, 1982).

Download references

Funding

The study was supported by the Russian Science Foundation no. 22-29-00864 (https://rscf.ru/project/22-29-00864/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Popov or A. D. Barinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, A.I., Barinov, A.D., Yemets, V.M. et al. Field-Frequency Variation during Plasma-Chemical Deposition of Silicon–Carbon Films as a Method for Their Structural Modification. J. Surf. Investig. 17, 1060–1064 (2023). https://doi.org/10.1134/S1027451023050300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050300

Keywords:

Navigation