Log in

Comprehensive Study of the Local Atomic Structure of Promising Ti-Containing Compounds

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A comprehensive study of the local atomic structure of titanium compounds obtained by mechanical activation (Ti–Al–C, Ti2AlC) and reference samples (Ti, TiH2) using extended X-ray absorption fine structure (EXAFS) and extended electron energy loss fine structure (EXELFS) spectroscopy is carried out. An analysis of the local atomic structure of titanium hydride shows that the presence of hydrogen expands the crystal lattice and leads to a change in the parameters of the local atomic structure. This change is observed both in the EXAFS and EXELFS spectra. It is shown that after mechanical activation, the coordination numbers decrease, which may indicate the formation of a multiphase system. Further annealing leads to formation of the Ti2AlC compound, which is confirmed by the results of model calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Sokol, V. Natu, S. Kota, and M. W. Barsoum, Trends Chem. 1, 210 (2019). https://doi.org/10.1016/j.trechm.2019.02.016

    Article  CAS  Google Scholar 

  2. M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  3. J. L. Smialek, Metall. Mater. Trans. A 49, 782 (2018). https://doi.org/10.1007/s11661-017-4346-9

    Article  CAS  Google Scholar 

  4. J. Gonzalez-Julian, G. Mauer, D. Sebold, D. E. Mack, and R. Vassen, J. Am. Ceram. Soc. 103, 2362 (2020). https://doi.org/10.1111/jace.16935

    Article  CAS  Google Scholar 

  5. Z. Wang, G. Ma, Z. Li, et al., Corros. Sci. 192, 109788 (2021). https://doi.org/10.1016/j.corsci.2021.109788

    Article  CAS  Google Scholar 

  6. I. M. Chirica, A. G. Mirea, S. Neatu, et al., J. Mater. Chem. A 9, 19589 (2021). https://doi.org/10.1039/D1TA04097A

    Article  CAS  Google Scholar 

  7. J. Sarwar, T. Shrouf, A. Srinivasa, et al., Sol. Energy Mater. Sol. Cells 182, 76 (2018). https://doi.org/10.1016/j.solmat.2018.03.018

    Article  CAS  Google Scholar 

  8. A. M. Lakhnik, I. M. Kirian, and A. D. Rud, Int. J. Hydrogen Energy 47, 7274 (2022). https://doi.org/10.1016/j.ijhydene.2021.02.081

    Article  CAS  Google Scholar 

  9. M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23, 4248 (2011). https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  10. M. Magnuson and M. Mattesini, Thin Solid Films 621, 108 (2017). https://doi.org/10.1016/j.tsf.2016.11.005

    Article  CAS  Google Scholar 

  11. O. R. Bakieva and O. M. Nemtsova, J. Electron Spectrosc. 222, 15 (2018). https://doi.org/10.1016/j.elspec.2017.10.004

    Article  CAS  Google Scholar 

  12. O. R. Bakieva, O. M. Nemtsova, and D. V. Surnin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 1039 (2015). https://doi.org/10.1134/S1027451015030180

    Article  CAS  Google Scholar 

  13. M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, Mater. Chem. Phys. 273, 125114 (2021). https://doi.org/10.1016/j.matchemphys.2021.125114

    Article  CAS  Google Scholar 

  14. D. I. Kochubei, EXAFS Spectroscopy in Catalysis (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  15. K. V. Klementiev, Code VIPER for Windows. http://www.desy.de/_klmn/viper.html.

  16. J. J. Rehr, FEFF Project. https://feff.phys.washington.edu/feffproject-feff.html.

  17. C. Wang, Y. Zhang, Y. Wei, et al., Powder Technol. 302, 423 (2016). https://doi.org/10.1016/j.powtec.2016.09.005

    Article  CAS  Google Scholar 

  18. M. B. Novikova and A. M. Ponomarenko, Metal Sci. Heat Treat. 50, 355 (2008). https://doi.org/10.1007/s11041-008-9072-x

    Article  CAS  Google Scholar 

  19. I. K. Averkiev and O. R. Bakieva, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 16, 734 (2022). https://doi.org/10.1134/S1027451022030041

    Article  CAS  Google Scholar 

  20. M. Dahlqvist, B. Alling, I. A. Abrikosov, et al., Phys. Rev. B 81, 024111 (2010). https://doi.org/10.1103/physrevb.81.024111

    Article  Google Scholar 

  21. J. R. Nelson, R. J. Needs, and C. J. Pickard, Phys. Rev. Mater. 5, 123801 (2021). https://doi.org/10.1103/PhysRevMaterials.5.123801

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement no. 075-15-2022-263). The experiments were performed using large-scale research facilities “EXAFS spectroscopy beamline”. The studies were carried out using the equipment of the Center for Collective Use “Center for Physical and Physico-Chemical Methods of Analysis, Study of the Properties and Characteristics of Surfaces, Nanostructures, Materials and Products” Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences. The study was performed at the Shared Research Center SSTRC on the basis of the VEPP-4-VEPP-2000 complex at the Budker Institute of Nuclear Physicss, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Averkiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averkiev, I.K., Bakieva, O.R. & Kriventsov, V.V. Comprehensive Study of the Local Atomic Structure of Promising Ti-Containing Compounds. J. Surf. Investig. 17, 724–729 (2023). https://doi.org/10.1134/S1027451023030229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023030229

Keywords:

Navigation