Log in

Abstract

The surface of graphene-like structures placed in an electric field with a strength of 1−10 V/μm is found to undergo considerable deformation. This effect is observed in both a direct field (emission current is present) and a reverse field (emission current is absent). The deformation of the surface of cathodes facilitates low-threshold electron emission. The qualitative model proposed here to explain the effect of low-energy electron emission is based on the idea of surface reconstruction and the formation of centers with negative correlation energies (negative-U centers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. G. N. Fursey, Appl. Surf. Sci. 215 (1–4), 113 (2003). https://doi.org/10.1016/S0169-4332(03)00315-5

    Article  CAS  Google Scholar 

  2. G. N. Fursey, D. V. Novikov, G. A. Dyuzhev, et al., Appl. Surf. Sci. 215 (1–4), 1135 (2003). https://doi.org/10.1016/S0169-4332(03)00316-7

    Article  CAS  Google Scholar 

  3. A. A. Zakhidov, A. N. Obraztsov, A. P. Volkov, and D. A. Lyashchenko, J. Exp. Theor. Phys. 100, 89 (2005).

    Article  CAS  Google Scholar 

  4. G. N. Fursei, M. A. Polyakov, A. A. Kantonistov, et al., Tech. Phys. 58, 845 (2013).

    Article  CAS  Google Scholar 

  5. I. Zakirov, G. Fursey, N. Egorov, et al., Young Researchers in Vacuum Micro, Nano Electronics (VMNE-YR) (St. Petersburg, 2017), p. 121.

    Google Scholar 

  6. G. Fursey, M. Polyakov, and I. Zakirov, Young Researchers in Vacuum Micro, Nano Electronics (VMNE-YR) (St. Petersburg, 2017), p. 149.

    Google Scholar 

  7. G. N. Fursey, Autoelectronic Emission (Lan’, St. Petersburg, 2012).

  8. G. N. Fursey, Field Emission in Vacuum Microelectronics (Springer, New York, 2005).

    Google Scholar 

  9. K. S. Novoselov, Usp. Fiz. Nauk 181, 1299 (2011). https://doi.org/10.3367/UFNr.0181.201112f.1299

    Article  Google Scholar 

  10. A. Yafyasov, V. Bogevolnov, G. Fursey, et al., Ultramicroscopy 111, 409 (2011). https://doi.org/10.1016/j.ultramic.2010.12.035

    Article  CAS  Google Scholar 

  11. G. Fursey, P. Konorov, B. Pavlov, and A. Yafyasov, Electronics 4, 1101 (2015). https://doi.org/10.3390/electronics4041101

    Article  CAS  Google Scholar 

  12. G. N. Fursey, M. A. Polyakov, and A. P. Voznyakovskii, Abstr. Intern. Workshop “Low-Dimensional Materials: Theory, Modeling, Experiment” (Dubna, 2018), p. 22.

    Google Scholar 

  13. Yu. V. Bozhevolnov, V. B. Bozhevolnov, and A. M. Yafyasov, in Explosive Production of New Materials: Science, Technology, Business, and Innovations, Ed. by A. A. Deribas and Yu. B. Scheck (Tourus, Moscow, 2012), p. 23.

    Google Scholar 

  14. A. C. Ferrari, J. C. Meyer, V. Scardaci, et al., Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  15. M.A. Polyakov, G.N. Fursey, J. Commun. Technol. Electron. 63 (3), 239 (2018). https://doi.org/10.1134/S1064226918030166

    Article  CAS  Google Scholar 

  16. X. Liang, A. S. P. Chang, Y. Zhang, et al., Nano Lett. 9 (1), 467 (2009). https://doi.org/10.1021/nl803860x

    Article  CAS  Google Scholar 

  17. A. N. Sidorov, M. M. Yazdanpanah, R. Jalilian, et al., Nanotecnology 18, 135301 (2007). https://doi.org/10.1088/0957-4484/18/13/135301

    Article  CAS  Google Scholar 

  18. G. N. Fursei, N. V. Egorov, I. I. Zakirov, et al., Radiotekh. Elektron. 60 (11), 1 (2015).

    Google Scholar 

  19. R. H. Fowler and L. W. Nordheim, Proc. Roy. Soc. Lond. A 119 (981), 173 (1928).

    Article  CAS  Google Scholar 

  20. V. D. Frolov, S. M. Pimenov, and V. I. Konov, Nanotechnol. Russ. 7 (1–2), 36 (2012). https://doi.org/10.1134/S1995078012010053

    Article  Google Scholar 

  21. Yu. V. Gulyaev, L. A. Chernozatonskii, Z. J. Kosakovskaja, et al., J. Vac. Sci. Technol. B 13, 435 (1995). https://doi.org/10.1116/1.587964

    Article  CAS  Google Scholar 

  22. A. N. Obraztsov, I. Yu. Pavlovsky, A. P. Volkov, et al., Diamond Relat. Mater. 8, 814 (1999). https://doi.org/10.1016/S0925-9635(98)00421-X

    Article  CAS  Google Scholar 

  23. R. Garg, N. K. Dutta, and N. R. Choudhury, Nanomater. 4, 267 (2014). https://doi.org/10.3390/nano4020267

    Article  CAS  Google Scholar 

  24. G. Fursey and M. Polyakov, Intern. J. Scientific Engin. Res 6 (10), 9 (2015).

    Google Scholar 

  25. L. M. Baskin and G. N. Fursey, Proceed. 13th Intern. Symp. on Discharges and Electrical Insulation in Vacuum (Paris, 1998), Vol. 1, p. 31.

  26. L. M. Baskin, P. Z. Mkrtychyan, and N. M. Sharkova, Inform. Tekhnol. Telekommun. 2, 4 (2014).

    Google Scholar 

  27. S. E. Krasavin and V. A. Osipov, J. Struct Chem. 59, 860 (2018). https://doi.org/10.1134/S0022476618040169

    Article  CAS  Google Scholar 

  28. P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975). https://doi.org/10.1103/PhysRevLett.34.953

    Article  Google Scholar 

  29. R. A. Street and N. F. Mott, Phys. Rev. Lett. 35, 1293 (1975). https://doi.org/10.1103/PhysRevLett.35.1293

    Article  CAS  Google Scholar 

  30. N. T. Bagraev and V. A. Mashkov, Solid State Commun. 51, 515 (1984). https://doi.org/10.1016/0038-1098(84)91024-X

    Article  CAS  Google Scholar 

  31. N. T. Bagraev, V. Yu. Grigoryev, L. E. Klyachkin, et al., Fiz. Tekh. Poluprovodn. 50, 1047 (2016).

    Google Scholar 

  32. F. Joucken, Y. Tison, J. Logaute, et al., Phys. Rev. B 85, 161408 (2012). https://doi.org/10.1103/PhysRevB.85.161408

    Article  CAS  Google Scholar 

  33. F. Guinea, M. I. Katsnelson, and M. A. H. Vozmediano, Phys. Rev. B 77, 075422 (2008). https://doi.org/10.1103/PhysRevB.77.075422

    Article  CAS  Google Scholar 

  34. J. C. Meyer, A. K. Geim, M. I. Katsnelson, et al., Nature 446, 61 (2007). https://doi.org/10.1038/nature05545

    Article  CAS  Google Scholar 

  35. A. K. Geim and K. S. Novoselov, Nature Mater 6, 183 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  36. K. S. Novoselov, Z. Jiang, Y. Zhang, et al., Science 315, 1379 (2007). https://doi.org/10.1126/science.1137201

    Article  CAS  Google Scholar 

  37. R. Feinman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II: Mainly electromagnetism and matter (Pearson/Addison-Wesley, San Francisco, 1966; Mir, Moscow, 1977).

  38. N. T. Bagraev, Mater. Sci. Forum, 143–147, 543 (1994). doi 10.4028/www.scientific.net/MSF.143-147.543

  39. N. T. Bagraev and V. A. Mashkov, Solid State Commun. 65, 1111 (1988). https://doi.org/10.1016/0038-1098(88)90904-0

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Raman spectroscopy measurements were conducted in the resource center “Geomodel” of the scientific park of St. Petersburg State University. Scanning electron microscopy was performed using the facilities of the Federal Center for Collective Use “Materials Science and Diagnostics in Advanced Technologies”.

Funding

The work was supported by the Ministry of Education and Science of the Russian Federation (project ID, RFMEFI62117X0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Fursey.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fursey, G.N., Polyakov, M.A., Bagraev, N.T. et al. Low-Threshold Field Emission from Carbon Structures. J. Surf. Investig. 13, 814–824 (2019). https://doi.org/10.1134/S1027451019050057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019050057

Keywords:

Navigation