Log in

Composite Material Based on Polytetrafluoroethylene and Al–Cu–Fe Quasi-Crystal Filler with Ultralow Wear: Morphology, Tribological, and Mechanical Properties

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Samples of composites with polytetrafluoroethylene as the matrix and a powder of 0, 1, 2, 4, 8, 16, and 32 vol % Al–Cu–Fe quasi-crystal as the filler are prepared. Electron microscopy studies of the sample structure are carried out, the influence of the filler on the degree of crystallinity and the melting and destruction temperatures of the samples is investigated; mechanical tensile tests and tribological tests are performed. The composite samples with filler contents of 4, 8, 16, and 32 vol % show ultralow wear with the coefficient K < 5 × 10–7 mm3/N m. The highest wear resistance exceeding that of unfilled polytetrafluoroethylene by 2200–3100 times is recorded in composites with 16 vol % filler. An increase in the wear resistance is associated with formation on the friction surface of a thin crust containing quasi-crystal particles 0.2–0.3 μm in size, revealed by scanning electron microscopy in combination with energy dispersive analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Shooter and D. Tabor, Proc. Phys. Soc., London, Sect. B 65 (9), 661 (1952).

    Article  Google Scholar 

  2. C. W. Bunn and E. R. Howells, Nature 174 (4429), 549 (1954).

    Article  Google Scholar 

  3. D. G. Flom and N. T. Porile, J. Appl. Phys. 26 (9), 1088 (1955).

    Article  Google Scholar 

  4. C. W. Bunn, A. J. Cobbold, and R. P. Palmer, J. Polym. Sci. 28 (117), 365 (1958).

    Article  Google Scholar 

  5. R. F. King and D. Tabor, Proc. Phys. Soc., London, Sect. B 66 (405), 728 (1953).

    Article  Google Scholar 

  6. D. G. Flom and N. T. Porile, Nature 175 (4459), 682 (1955).

    Article  Google Scholar 

  7. D. G. Flom, J. Appl. Phys. 28 (11), 1361 (1957).

    Article  Google Scholar 

  8. Yu. K. Mashkov, Tribophysics of Metals and Polymers (Omsk State Technical Univ., Omsk, 2013) [in Russian].

    Google Scholar 

  9. P. D. Bloom, K. G. Baikerikar, J. W. Anderegg, and V. V. Sheares, Mater. Sci. Eng., A 360, 46 (2003).

    Article  Google Scholar 

  10. P. D. Bloom, K. G. Baikerikar, J. W. Anderegg, and V. V. Sheares, Mater. Res. Soc. Symp. Proc. 643, K16.3.1 (2001).

  11. Y. Liu, P. D. Bloom, V. V. Sheares, and J. U. Otaigbe, Mater. Res. Soc. Symp. Proc. 702, 339 (2002).

    Google Scholar 

  12. B. C. Anderson, P. D. Bloom, K. G. Baikerikar, and V. V. Sheares, Biomaterials 8 (23), 1761 (2002).

    Article  Google Scholar 

  13. L. R. F. Figueiredo, L. B. da Silva, T. A. dos Passos, S. J. G. de Lima, and J. D. D. Melo, in Proc. 22nd Int. Congress “Mechanical Engineering (COBEM 2013)” (Ribeirão Preto, 2013), p. 3685.

    Google Scholar 

  14. M. B. Tsetlin, A. A. Teplov, E. K. Golubev, S. I. Belousov, S. N. Chvalun, S. V. Krasheninnikov, A. L. Vasiliev, and M. Yu. Presniakov, in Proc. 12th Int. Conference on Nanostructured Materials (NANO 2014) (Moscow, 2014), p. 534.

    Google Scholar 

  15. M. B. Tsetlin, A. A. Teplov, S. I. Belousov, S. N. Chvalun, E. A. Golovkova, S. V. Krasheninnikov, E. K. Golubev, M. Yu. Presnyakov, A. S. Orekhov, A. L. Vasiliev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (5), 1077 (2015).

    Article  Google Scholar 

  16. M. B. Tsetlin, A. A. Teplov, S. I. Belousov, S. N. Chvalun, Ye. A. Golovkova, S. V. Krasheninnikov, E. K. Golubev, A. L. Vasilyev, M. Yu. Presnyakov and P. V. Dmitryakov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (2), 315 (2017).

    Article  Google Scholar 

  17. J. M. Dubois, in Proc. Conference “New Horizons in Quasicrystals” (Singapore, 1997), p. 208.

    Google Scholar 

  18. D. Lutz, Ind. Phys. 2 (4), 26 (1996).

    Google Scholar 

  19. M. Brown, Tech. Insights Futuretech. 5 (233) (1999).

    Google Scholar 

  20. V. K. Kryzhanovskii, V. V. Burlov, A. D. Panimatchenko, and Yu. V. Kryzhanovskaya, Technical Properties of Polymer Materials (Professiya, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  21. A. A. Shevchenko, Physical Chemistry and Mechanics of Composite Materials (Professiya, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  22. W. Grellmann and S. Seidler, Polymer Testing (Hanser Publ., Munich, 2014).

    Google Scholar 

  23. V. P. Privalko, Handbook on Physical Chemistry of Polymers, Vol. 2: Properties of Bulk-Polymerized Polymers (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  24. Yu. S. Lipatov, Physical Chemistry of Filled Polymers (Khimiya, Moscow, 1977) [in Russian].

    Google Scholar 

  25. A. V. Tarasov, Candidate’s Dissertation in Chemistry (Kurnakov Institute of General and Inorganic Chemistry Russ. Acad. Sci., Moscow, 2010).

    Google Scholar 

  26. Yu. A. Panshin, S. G. Malkevich, and Ts. S. Dunaevskaya, Ftoroplasts (Khimiya, Leningrad, 1978) [in Russian].

    Google Scholar 

  27. A. M. Kochnev, A. E. Zaikin, S. S. Galibeev, and V. P. Arkhireev, Physical Chemistry of Polymers (Fen, Kazan, 2003) [in Russian].

    Google Scholar 

  28. I. I. Tugov and G. I. Kostrykina, Physics and Chemistry of Polymers (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  29. J. Yang, P. H. Geil, T. C. Long, and P. Xu, Chin. J. Polym. Sci. 23 (2), 137 (2005).

    Article  Google Scholar 

  30. J. Ye, D. L. Burris, and T. **e, Lubricants 4 (1), 4 (2016).

    Article  Google Scholar 

  31. B. A. Krick, A. A. Pitenis, K. L. Harris, et al., Tribol. Int. 95, 245 (2016).

    Article  Google Scholar 

  32. Yu. K. Mashkov, L. M. Gadieva, L. F. Kalistratova, G. I. Baranov, and N. N. Sukharina, Trenie Iznos 9 (4), 606 (1988).

    Google Scholar 

  33. S. W. Han and T. Blanchet, J. Tribol. 119 (4), 694 (1997).

    Article  Google Scholar 

  34. S. E. McElwain, T. A. Blanchet, L. S. Schadler, and W. G. Sawyer, Tribol. Trans. 51 (3), 247 (2008).

    Article  Google Scholar 

  35. V. P. Solomko, Filled Crystallizing Polymers (Naukova Dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  36. Yu. M. Pleskachevskii, Trenie Iznos 4 (5), 948 (1983).

    Google Scholar 

  37. V. A. Gol’dade, V. A. Struk, and S. S. Pesetskii, Wear Inhibitors of Metallopolymer Systems (Khimiya, Moscow, 1993) [in Russian].

    Google Scholar 

  38. Yu. K. Mashkov, L. F. Kalistratova, and Z. N. Ovchar, Structure and Wear-Resistance of Modified Polytetrafluoroethylene (Omsk State Technical Univ., Omsk, 1998) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Tsetlin.

Additional information

Original Russian Text © M.B. Tsetlin, A.A. Teplov, S.I. Belousov, S.N. Chvalun, E.A. Golovkova, S.V. Krasheninnikov, E.K. Golubev, E.B. Pichkur, P.V. Dmitryakov, A.I. Buzin, 2018, published in Poverkhnost’, 2018, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsetlin, M.B., Teplov, A.A., Belousov, S.I. et al. Composite Material Based on Polytetrafluoroethylene and Al–Cu–Fe Quasi-Crystal Filler with Ultralow Wear: Morphology, Tribological, and Mechanical Properties. J. Surf. Investig. 12, 277–285 (2018). https://doi.org/10.1134/S1027451018020167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018020167

Keywords

Navigation