Log in

A Multi-Aperture Transceiver System of a Lidar with Narrow Field of View and Minimal Dead Zone

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Requirements are determined for the spontaneous Raman lidar transceiver system, designed for solving problems dealing with studying the atmospheric boundary layer and predicting dangerous smog situations. The optical scheme of a lidar transceiver system with a narrow field of view and minimal dead zone is synthesized. The results of computer simulation of the lidar overlap functions obtained by the ray tracing method for few optical schemes of the receiving optical system are presented. It is shown that when a multielement transceiver based on a combination of four receiving apertures of different diameters is used, a lidar sensing range can be from 5 to 3000 m for the dynamic range of the lidar response of no more than 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Agishev and C. Adolfo, “Spatial filtering efficiency of monostatic biaxial lidar: Analysis and applications,” Appl. Opt. 41, 7516–7521 (2002).

    Article  ADS  Google Scholar 

  2. K. Stelmaszczyk, M. Dell’Aglio, S. Chudzynski, T. Stacewicz, and L. Woste, “Analytical function for lidar geometrical compression form-factor calculations,” J. Appl. Opt. 44 (7), 1323–1331 (2005).

    Article  ADS  Google Scholar 

  3. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41 (3), 511–514 (2002).

    Article  ADS  Google Scholar 

  4. S. Hu, X. Wang, Y. Wu, C. Li, and H. Hu, “Geometrical form factor determination with Raman backscattering signals,” Opt. Lett. 30 (14), 1879–1881 (2005).

    Article  ADS  Google Scholar 

  5. V. A. Banakh, I. A. Razenkov, and I. N. Smalikho, “Aerosol lidar for study of the backscatter amplification in the atmosphere. Part I. Computer simulation,” Opt. Atmos. Okeana. 28 (1), 5–11 (2015).

    Google Scholar 

  6. B. V. Kaul, “Antenna complex for laser sensing of the upper atmospheric layers,” Atmos. Ocean. Opt. 5 (4), 277–281 (1992)

    MathSciNet  Google Scholar 

  7. A. I. Abramochkin and A. A. Tikhomirov, “Optimization of a lidar receiving system. 2. Spatial filters,” Atmos. Ocean. Opt. 12 (4), 331–342 (1999).

    Google Scholar 

  8. Yu. S. Balin and I. V. Samokhvalov, Certain Approaches to arrowing the Dynamic Range of Lidar Signals. Instruments and Techniques for Remote Sounding of Atmospheric Parameters (Nauka, Novosibirsk, 1979), p. 43–47 [in Russian].

    Google Scholar 

  9. Yu. S. Balin, I. V. Samokhvalov, and V. S. Shamanaev, USSR Inventor’s Certificate No. 496524, Byull. Izobret., No. 47 (1975).

    Google Scholar 

  10. A. A. Tikhomirov, “Analysis of methods and devices to compress the dynamic range of lidar returns,” Atmos. Ocean. Opt. 13 (2), 190–201 (2000).

    Google Scholar 

  11. Yu. S. Balin, G. P. Kokhanenko, M. G. Klemasheva, I. E. Penner, and S. V. Samoilova, RF Patent No. 116652, Byull. Izobret. 27.05.2012.

    Google Scholar 

  12. Yu. S. Balin, G. S. Bairashin, G. P. Kokhanenko, M. G. Klemasheva, I. E. Penner, and S. V. Samoilova, “LOSA-M2 aerosol Raman lidar,” Quantum Electron. 41 (10), 945–949 (2011).

    Article  ADS  Google Scholar 

  13. I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Yu. Arshinov, and H. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. 2004 (79), 775–782.

    Google Scholar 

  14. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).

    Article  ADS  Google Scholar 

  15. Yu. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Muller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44 (17), 3593–3603 (2005).

    Article  ADS  Google Scholar 

  16. G. P. Kokhanenko, Yu. S. Balin, M. G. Klemasheva, I. E. Penner, S. V. Samoilova, S. A. Terpugova, V. A. Banakh, I. N. Smalikho, A. V. Falits, T. M. Rasskazchikova, P. N. Antokhin, M. Yu. Arshinov, B.D. Belan, and S. B. Belan, “Structure of aerosol fields of the atmospheric boundary layer according to aerosol and Doppler lidar data during passage of atmospheric fronts,” Atmos. Ocean. Opt. 30 (1), 18–32 (2017).

    Article  Google Scholar 

  17. E. L. McGrath-Spangler and A. Molod, “Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions,” Atmos. Chem. Phys. 14, 6717–6727 (2014).

    Article  ADS  Google Scholar 

  18. E. L. McGrath-Spangler and A. S. Denning, “Global seasonal variations of midday planetary boundary layer depth from CALIPSO space-borne LIDAR,” J. Geophys. Res.: Atmos 118, 1226–1233 (2013).

    Article  ADS  Google Scholar 

  19. D. J. Seidel, C. O. Ao, and K. Li, “Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis,” J. Geophys. Res. 115 (D16), D16113 (2010).

    Google Scholar 

  20. J. Cooney and M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).

    Article  ADS  Google Scholar 

  21. R. Gill, K. Geller, J. Farina, and J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).

    Article  ADS  Google Scholar 

  22. G. G. Matvienko, Yu. S. Balin, S. M. Bobrovnikov, O. A. Romanovskii, G. P. Kokhanenko, S. V. Samoilova, I. E. Penner, E. V. Gorlov, V. I. Zharkov, S. A. Sadovnikov, O. V. Kharchenko, S. V. Yakovlev, O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, A. P. Makeev, A. A. Nevzorov, and A. V. Nevzorov, “Siberian Lidar Station: Instrument and results,” Proc. SPIE 10035, CID: 1003 59, [10035–227] (2016). doi 10.1117/12.2254787

    Google Scholar 

  23. J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11 (1), 108–112 (1972).

    Article  ADS  Google Scholar 

  24. R. J. Butcher, D. V. Willetts, and W. J. Jones, “On the use of Fabry-Perot etalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. Roy. Soc. Lon., A 324, 231–245 (1971).

    Article  ADS  Google Scholar 

  25. J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51, 8111–8131 (2012).

    Article  ADS  Google Scholar 

  26. J. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).

    Article  ADS  Google Scholar 

  27. V. Sherlock, A. Hauchecorne, and J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).

    Article  ADS  Google Scholar 

  28. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earths atmosphere,” Appl. Opt. 31, 3068–3082 (1992).

    Article  ADS  Google Scholar 

  29. Laser Monitoring of the Atmosphere, Ed. by E.D. Hinkley (Springer, Berlin, Heidelberg, 1976).

  30. T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Bergh, “Raman Lidar for Meteorological Observations, RALMO—Part 1: Instrument description,” Atmos. Meas. Tech. 6, 1329–1346 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Bobrovnikov.

Additional information

Original Russian Text © S.M. Bobrovnikov, E.V. Gorlov, V.I. Zharkov, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovnikov, S.M., Gorlov, E.V. & Zharkov, V.I. A Multi-Aperture Transceiver System of a Lidar with Narrow Field of View and Minimal Dead Zone. Atmos Ocean Opt 31, 690–697 (2018). https://doi.org/10.1134/S1024856018060052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018060052

Keywords

Navigation