Log in

Individual Variance in Human Aggression: A Combined Effect of Polygenic Score and Social/Lifestyle Factors

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

To date, the assessment of a simultaneous effect of SNPs on manifesting aggression via polygenic score (PGS) approach has been performed mainly in Western Europeans and is scarce in Russians. In turn, genes belonging to monoaminergic systems, inflammatory response, hypothalamic-pituitary-adrenal axis, telomerase activity, and miRNA regulation have been previously associated with aggressive behavior or affective pathology. Therefore, we aimed to estimate a combined effect of PGS based on 30 SNPs belonging to abovementioned systems and social/lifestyle factors on individual differences in BPAQ-measured aggression in young adults from the Volga-Ural region (VUR) of Russia. Initially, a series of multiple linear regression was carried out in the testing sample (N = 500) from VUR with PGS calculated on a basis of effect estimates obtained from the training sample (N = 565) from VUR and controlling for sex, ethnicity, and age. The final model was based on a combined effect of PGS of TERT, TNF, SLC6A4, smoking and maternal protection (p = 8.41 × 10–10), which explained up to 11.51% of variance in physical aggression. Subsequently, we calculated PGS in the total sample from VUR (N = 1065) based on summary statistics from risky behavior GWAS conducted in UK Biobank (Mbatchou et al., 2021). The best model explaining up to 4.6% of variance in verbal aggression comprised of PGS, sibship size, and childhood adversity (p = 1.71 × 10–6). Revealed findings evidence in a better prognostic ability of models comprising PGS based on summary statistics from ethnically same cohort and the same phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Baron, R.A. and Richardson, D.R., Human Aggression, New York: Springer-Verlag, 2004, 2nd ed.

    Google Scholar 

  2. Schippers, M.C., Ioannidis, J.P.A., and Joffe, A.R., Aggressive measures, rising inequalities, and mass formation during the COVID-19 crisis: an overview and proposed way forward, Front. Public Health, 2022, vol. 10, p. 950965. https://doi.org/10.3389/fpubh.2022.950965

    Article  PubMed  PubMed Central  Google Scholar 

  3. Manchia, M. and Fanos, V., Targeting aggression in severe mental illness: the predictive role of genetic, epigenetic, and metabolomic markers, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, vol. 77, pp. 32—41. https://doi.org/10.1016/j.pnpbp.2017.03.024

    Article  PubMed  Google Scholar 

  4. Alia-Klein, N., Goldstein, R.Z., Kriplani, A., et al., Brain monoamine oxidase A activity predicts trait aggression, J. Neurosci., 2008, vol. 28, no. 19, pp. 5099—5104. https://doi.org/10.1523/JNEUROSCI.0925-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cherepkova, E.V., Maksimov, V.V., and Aftanas, L.I., Polymorphism of serotonin transporter gene in male subjects with antisocial behavior and MMA fighters, Transl. Psychiatry, 2018, vol. 8, no. 1, p. 248. https://doi.org/10.1038/s41398-018-0298-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Davydova, Y., Enikeeva, R., Kazantseva, A., et al., Genetic basis of depressive disorders, Vavilov J. Genet. Breed., 2019, vol. 23, no. 4, pp. 465—472. https://doi.org/10.18699/VJ19.515

    Article  Google Scholar 

  7. Takahashi, A., Flanigan, M.E., McEwen, B.S., and Russo, S.J., Aggression, social stress, and the immune system in humans and animal models, Front. Behav. Neurosci., 2018, vol. 12, p. 56. https://doi.org/10.3389/fnbeh.2018.00056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. González-Giraldo, Y., Camargo, A., and López-León, S., A functional SNP in MIR124-1, a brain expressed miRNA gene, is associated with aggressiveness in a Colombian sample, Eur. Psychiatry, 2015, vol. 30, no. 4, pp. 499—503. https://doi.org/10.1016/j.eurpsy.2015.03.002

    Article  PubMed  Google Scholar 

  9. Mick, E., McGough, J., Deutsch, C.K., et al., Genome-wide association study of proneness to anger, PLoS One, 2014, vol. 9, no. 1, p. e87257. https://doi.org/10.1371/journal.pone.0087257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Choi, S.W., Mak, T.S.-H., and O’Reilly, P.F., Tutorial: a guide to performing polygenic risk score analyses, Nat. Protoc., 2020, vol. 15, no. 9, pp. 2759—2772. https://doi.org/10.1038/s41596-020-0353-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang, F.L., Bountress, K.E., Lemery-Chalfant, K., et al., A polygenic risk score enhances risk prediction for adolescents’ antisocial behavior over the combined effect of 22 extra-familial, familial, and individual risk factors in the context of the family check-up, Prev. Sci., 2023, vol. 24, no. 4, pp. 739—751. https://doi.org/10.1007/s11121-022-01474-1

    Article  PubMed  Google Scholar 

  12. Kleine Deters, R., Ruisch, I.H., Faraone, S.V., et al., Polygenic risk scores for antisocial behavior in relation to amygdala morphology across an attention deficit hyperactivity disorder case—control sample with and without disruptive behavior, J. Eur. Coll. Neuropsychopharmacol., 2022, vol. 62, pp. 63—73. https://doi.org/10.1016/j.euroneuro.2022.07.182

    Article  CAS  Google Scholar 

  13. Kazantseva, A., Davydova, Y., Enikeeva, R., et al., a combined effect of polygenic scores and environmental factors on individual differences in depression level, Genes (Basel), 2023, vol. 14, no. 7, p. 1355. https://doi.org/10.3390/genes14071355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tielbeek, J.J., Johansson, A., Polderman, T.J.C., et al., Genome-wide association studies of a broad spectrum of antisocial behavior, JAMA Psychiatry, 2017, vol. 74, no. 12, pp. 1242—1250. https://doi.org/10.1001/jamapsychiatry.2017.3069

    Article  PubMed  PubMed Central  Google Scholar 

  15. Borinskaya, S.A., Rubanovich, A.V., Yankovsky, et al., Epigenome-wide association study of CpG methylation in aggressive behavior, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1454—1460. https://doi.org/10.1134/S1022795421120048

    Article  CAS  Google Scholar 

  16. Mustafin, R.N., Kazantseva, A.V., Enikeeva, R.F., et al., Epigenetics of aggressive behavior, Russ. J. Genet., 2019, vol. 55, no. 9, pp. 1051—1060. https://doi.org/10.1134/S1022795419090096

    Article  CAS  Google Scholar 

  17. Ksinan, A.J., Smith, R.L., Barr, P.B., and Vazsonyi, A.T., The associations of polygenic scores for risky behaviors and parenting behaviors with adolescent externalizing problems, Behav. Genet., 2022, vol. 52, no. 1, pp. 26—37. https://doi.org/10.1007/s10519-021-10079-3

    Article  PubMed  Google Scholar 

  18. Kretschmer, T., Vrijen, C., Nolte, I.M., et al., Gene—environment interplay in externalizing behavior from childhood through adulthood, J. Child Psychol. Psychiatry, 2022, vol. 63, no. 10, pp. 1206—1213. https://doi.org/10.1111/jcpp.13652

    Article  PubMed  PubMed Central  Google Scholar 

  19. Enikolopov, S.N. and Tsybulskii, N.P., Psychometric analysis of the Russian version of the questionnaire for the diagnosis of aggression by A. Bass and M. Perry, Psychol. J., 2007, no. 1, pp. 115—124.

  20. Parker, G., Tupling, H., and Brown, L.B., A parental bonding instrument, Br. J. Med. Psychol., 1979, vol. 52, no. 1, pp. 1—10. https://doi.org/10.1111/j.2044-8341.1979.tb02487.x

    Article  Google Scholar 

  21. Deng, W.Q., Belisario, K., Gray, J.C., et al., Leveraging related health phenotypes for polygenic prediction of impulsive choice, impulsive action, and impulsive personality traits in 1534 European ancestry community adults, Genes. Brain. Behav., 2023, vol. 22, no. 3, p. e12848. https://doi.org/10.1111/gbb.12848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mbatchou, J., Barnard, L., Backman, J., et al., Computationally efficient whole-genome regression for quantitative and binary traits, Nat. Genet., 2021, vol. 53, no. 7, pp. 1097—1103. https://doi.org/10.1038/s41588-021-00870-7

    Article  PubMed  CAS  Google Scholar 

  23. Tielbeek, J.J., Uffelmann, E., Williams, B.S., et al., Uncovering the genetic architecture of broad antisocial behavior through a genome-wide association study meta-analysis, Mol. Psychiatry, 2022, vol. 27, no. 11, pp. 4453—4463. https://doi.org/10.1038/s41380-022-01793-3

    Article  PubMed  CAS  Google Scholar 

  24. Gould, T.J., Epigenetic and long-term effects of nicotine on biology, behavior, and health, Pharmacol. Res., 2023, vol. 192, p. 106741. https://doi.org/10.1016/j.phrs.2023.106741

    Article  PubMed  CAS  Google Scholar 

  25. Weltens, I., Bak, M., Verhagen, S., et al., Aggression on the psychiatric ward: prevalence and risk factors. a systematic review of the literature, PLoS One, 2021, vol. 16, no. 10, p. e0258346. https://doi.org/10.1371/journal.pone.0258346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Labella, M.H. and Masten, A.S., Family influences on the development of aggression and violence, Curr. Opin. Psychol., 2018, vol. 19, pp. 11—16. https://doi.org/10.1016/j.copsyc.2017.03.028

    Article  PubMed  Google Scholar 

  27. Nakao, K., Takaishi, J., Tatsuta, K., et al., The influences of family environment on personality traits, Psychiatry Clin. Neurosci., 2000, vol. 54, no. 1, pp. 91—95. https://doi.org/10.1046/j.1440-1819.2000.00642.x

    Article  PubMed  Google Scholar 

  28. Carbonneau, R., Vitaro, F., Brendgen, M., et al., Early risk factors associated with preschool developmental patterns of single and co-occurrent disruptive behaviors in a population sample, Dev. Psychol., 2022, vol. 58, no. 3, pp. 438—452. https://doi.org/10.1037/dev0001295

    Article  PubMed  Google Scholar 

  29. Krueger, R.F., Hicks, B.M., Patrick, C.J., et al., Etiologic connections among substance dependence, antisocial behavior, and personality: modeling the externalizing spectrum, J. Abnorm. Psychol., 2002, vol. 111, no. 3, pp. 411—424.

    Article  PubMed  Google Scholar 

  30. Mbarek, H., Milaneschi, Y., Hottenga, J.-J., et al., Genome-wide significance for PCLO as a gene for major depressive disorder, J. Int. Soc. Twin Stud., 2017, vol. 20, no. 4, pp. 267—270. https://doi.org/10.1017/thg.2017.30

    Article  Google Scholar 

  31. Fairchild, G., Baker, E., and Eaton, S., Hypothalamic-pituitary-adrenal axis function in children and adults with severe antisocial behavior and the impact of early adversity, Curr. Psychiatry Rep., 2018, vol. 20, no. 10, p. 84.https://doi.org/10.1007/s11920-018-0952-5

    Article  PubMed  PubMed Central  Google Scholar 

  32. Monroy-Jaramillo, N., Dyukova, E., and Walss-Bass, C., Telomere length in psychiatric disorders: is it more than an ageing marker?, J. World Fed. Soc. Biol. Psychiatry, 2018, vol. 19, pp. S2—S20. https://doi.org/10.1080/15622975.2016.1273550

    Article  Google Scholar 

  33. Pinakhina, D., Yermakovich, D., Vergasova, E., et al., GWAS of depression in 4520 individuals from the Russian population highlights the role of MAGI2 (S‑SCAM) in the gut-brain axis, Front. Genet., 2022, vol. 13, p. 972196. https://doi.org/10.3389/fgene.2022.972196

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (grant no. 17-78-30028) (in the part of psychological testing), the Ministry of Science and Higher Education of the Republic of Bashkortostan (agreement no. 1, December 2, 2022) (in the part of biomaterials preparation and genoty**), the Ministry of Science and Higher Education of Russian Federation (no. 075-15-2021-595) (in the part of statistical analysis). DNA samples for the study were provided by the IBG UFRC RAS collection “Collection of human biological materials” developed within the project of Bioresource collections of the FASO of Russia (project no. 007-030164/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kazantseva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazantseva, A.V., Davydova, Y.D., Enikeeva, R.F. et al. Individual Variance in Human Aggression: A Combined Effect of Polygenic Score and Social/Lifestyle Factors. Russ J Genet 59 (Suppl 2), S227–S236 (2023). https://doi.org/10.1134/S1022795423140065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423140065

Keywords:

Navigation