Log in

Pre-Harvest Sprouting in Soft Winter Wheat (Triticum aestivum L.) and Evaluation Methods

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review is devoted to pre-harvest sprouting (PHS) in soft wheat (Triticum aestivum L.) as one of the main problems faced by specialists in the field of genetics and selection of grain crops. Pre-harvest sprouting leads to a decrease in yields and economic losses. In the present work, the internal and external factors which influence PHS grain crops, as well as their interrelation, have been described. The characteristics of efficiency and features of the use of physiological biochemical and molecular genetic methods to evaluate the pre-harvest sprouting resistance of soft wheat grain are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Singh, C., Kamble, U.R., Gupta, V., et al., Pre-harvest sprouting in wheat: current status and future prospects, J. Cereal Res., 2021, vol. 13, pp. 1—22. https://doi.org/10.25174/2582-2675/2021/114484

    Article  Google Scholar 

  2. Gao, X., Hu, C.H., Li, H.Z., et al., Factors affecting pre-harvest sprouting resistance in wheat (Triticum aestivum L.): a review, J. Anim. Plant Sci., 2013, vol. 23, no. 2, pp. 556—565.

    CAS  Google Scholar 

  3. Kocheshkova, A.A., Kroupin, P.Y., Bazhenov, M.S., et al., Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat—wheatgrass hybrids, PLoS One, 2017, vol. 12, no. 11. e0188049. https://doi.org/10.1371/journal.pone.0188049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Domash, V.I., Ivanov, O.A., Gordei, I.A., et al., The role of hydrolytic enzymes in cereal crop tolerance to grain germination in spike, Vestsi Nats. Akad. Navuk Belarusi, Ser. Biyal. Navuk, 2017, no. 1, pp. 77—83.

  5. Nakamura, S., Grain dormancy genes responsible for preventing pre-harvest sprouting in barley and wheat, Breed. Sci., 2018, vol. 68, pp. 295—304. https://doi.org/10.1270/jsbbs.17138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olaerts, H. and Courtin, C.M., Impact of preharvest sprouting on endogenous hydrolases and technological quality of wheat and bread: a review, Compr. Rev. Food Sci. Food Saf., 2018, vol. 17, no. 3, pp. 698—713.

    Article  PubMed  Google Scholar 

  7. Vetch, J.M., Stougaard, R.N., Martin, J.M., and Giroux, M.J., Review: revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.), Plant Sci., 2019, vol. 281, pp. 180—185. https://doi.org/10.1016/j.plantsci.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  8. Ali, A., Cao, J., Jiang, H., et al., Unraveling molecular and genetic studies of wheat (Triticum aestivum L.) resistance against factors causing pre-harvest sprouting, Agronomy, 2019, vol. 9, no. 3, p. 117. https://doi.org/10.3390/agronomy9030117

    Article  CAS  Google Scholar 

  9. Nonogaki, H., Barrero, J.M., and Li, C., Editorial: seed dormancy, germination, and pre-harvest sprouting, Front. Plant Sci., 2018, vol. 9, р. 1783. https://doi.org/10.3389/fpls.2018.01783

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reddy, L.V., Metzger, R.J., and Ching, T.M., Effect of temperature on seed dormancy of wheat, Crop Sci., 1985, vol. 25, no. 3, pp. 455—458. https://doi.org/10.2135/cropsci1985.0011183X00250-0030007x

    Article  Google Scholar 

  11. Smith, G. and Gooding, M., Models of wheat grain quality considering climate, cultivar and nitrogen effects, Agric. For. Meteorol., 1999, vol. 94, nos. 3—4, pp. 159—170. https://doi.org/10.1016/s0168-1923(99)00020-9

    Article  Google Scholar 

  12. Krupnova, O.V., On the comparison of grain quality of spring and winter wheat relative to the division into market classes (review), S-kh. Biol., 2013, vol. 48, no. 1, pp. 15—25.

    Google Scholar 

  13. Biddulph, T.B., Mares, D.J., Plummer, J.A., and Setter, T.L., Drought and high temperature increases pre-harvest sprouting tolerance in a genotype without grain dormancy, Euphytica, 2005, vol. 143, pp. 277—283. https://doi.org/10.1007/s10681-005-7882-0

    Article  CAS  Google Scholar 

  14. Himi, E., Mares, D.J., Yanagisawa, A., and Noda, K., Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat, J. Exp. Bot., 2002, vol. 53, no. 374, pp. 1569—1574. https://doi.org/10.1093/jxb/erf005

    Article  CAS  PubMed  Google Scholar 

  15. Jacobsen, J.V., Pearce, D.W., Poole, A.T., et al., Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley, Physiol. Plant, 2002, vol. 115, no. 3, pp. 428—441. https://doi.org/10.1034/j.1399-3054.2002.1150313.x

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Y., Zhang, C.L., Chen, X.M., et al., Identification of wheat genotypes with preharvest sprouting tolerance by combinated analysis of spike germination rate, germination index and molecular marker Vp1B3, J. Triticeae Crops, 2007, vol. 27, pp. 577—582.

    CAS  Google Scholar 

  17. Linkies, A. and Leubner-Metzger, G., Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination, Plant Cell Rep., 2012, vol. 31, pp. 253—270. https://doi.org/10.1007/s00299-011-1180-1

    Article  CAS  PubMed  Google Scholar 

  18. Barrero, J.M., Mrva, K., Talbot, M.J., et al., Genetic, hormonal and physiological analysis of late maturity alpha-amylase (LMA) in wheat, Plant Physiol., 2013, vol. 161, pp. 1265—1277. https://doi.org/10.1104/pp.112.209502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, A., Gao, F., Kanno, Y., et al., Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling, PLoS One, 2013, vol. 8, no. 2. e56570. https://doi.org/10.1371/journal.pone.0056570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chitnis, V.R., Gao, F., Yao, Z., et al., After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid, PLoS One, 2014, vol. 9, no. 1. e87543. https://doi.org/10.1371/journal.pone.0087543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shu, K., Liu, X.D., **e, Q., and He, Z.H., Two faces of one seed: hormonal regulation of dormancy and germination, Mol. Plant, 2016, vol. 9, no. 1, pp. 34—45. https://doi.org/10.1016/j.molp.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  22. Kucera, B., Cohn, M.A., and Leubner-Metzger, G., Plant hormone interactions during seed dormancy release and germination, Seed Sci. Res., 2005, vol. 15, pp. 281—307. https://doi.org/10.1079/SSR2005218

    Article  CAS  Google Scholar 

  23. Kermode, A.R., Role of abscisic acid in seed dormancy, J. Plant Growth Regul., 2005, vol. 24, pp. 319—344. https://doi.org/10.1007/s00344-005-0110-2

    Article  CAS  Google Scholar 

  24. Chono, M., Matsunaka, H., Seki, M., et al., Isolation of a wheat (Triticum aestivum L.) mutant in ABA8'-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition, Breed. Sci., 2013, vol. 63, no. 1, pp. 104—115. https://doi.org/10.1270/jsbbs.63.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okamoto, M., Kuwahara, A., Seo, M., et al., CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis, Plant Physiol., 2006, vol. 141, no. 1, pp. 97—107. https://doi.org/10.1104/pp.106.079475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nambara, E., Okamoto, M., Tatematsu, K., et al., Abscisic acid and the control of seed dormancy and germination, Seed Sci. Res., 2010, vol. 20, pp. 55—67. https://doi.org/10.1017/S0960258510000012

    Article  CAS  Google Scholar 

  27. King, R.W., Abscisic acid in seed development, in The Physiology and Biochemistry of Seed Development, Dormancy and Germination, Khan A.A., Ed., Amsterdam: Elsevier, 1982, pp. 157—181.

    Google Scholar 

  28. Walker-Simmons, M., ABA levels and sensitivity in develo** wheat embryos of sprouting resistant and susceptible cultivars, Plant Physiol., 1987, vol. 84, no. 1, pp. 61—66. https://doi.org/10.1104/pp.84.1.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suzuki, T., Matsuura, T., Kawakami, N., and Noda, K., Accumulation and leakage of abscisic acid during embryo development and seed dormancy in wheat, Plant Growth Regul., 2000, vol. 30, pp. 253—260. https://doi.org/10.1023/A:1006320614530

    Article  CAS  Google Scholar 

  30. van de Velde, K., Chandler, P.M., van der Straeten, D., and Rohde, A., Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy, J. Exp. Bot., 2017, vol. 68, no. 3, pp. 443—455. https://doi.org/10.1093/jxb/erw471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramaih, S., Guedira, M., and Paulsen, G.M., Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat, Funct. Plant Biol., 2003, vol. 30, no. 9, pp. 939–945. https://doi.org/10.1071/FP03113

    Article  CAS  PubMed  Google Scholar 

  32. Caliskan, M. and Cuming, A.C., Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination, Plant J., 1998, vol. 15, no. 2, pp. 165—171. https://doi.org/10.1046/j.1365-313x.1998.00191.x

    Article  CAS  PubMed  Google Scholar 

  33. Bykova, N.V., Hoehn, B., Rampitsch, C., et al., Thiol redox-sensitive seed proteome in dormant and non dormant genotypes of wheat, Phytochemistry, 2011, vol. 72, no. 10, pp. 1162—1172. https://doi.org/10.1016/j.phytochem.2010.12.021

    Article  CAS  PubMed  Google Scholar 

  34. Graeber, K.A.I., Nakabayashi, K., Miatton, E., et al., Molecular mechanisms of seed dormancy, Plant Cell Environ., 2012, vol. 35, no. 10, pp. 1769—1786. https://doi.org/10.1111/j.1365-3040.2012.02542.x

    Article  CAS  PubMed  Google Scholar 

  35. Patwa, N. and Penning, B.W., Environmental impact on cereal crop grain damage from pre-harvest sprouting and late maturity alpha-amylase, in Sustainable Agriculture in the Era of Climate Change, 2020, pp. 23—41. https://doi.org/10.1007/978-3-030-45669-6_2

  36. Skerritt, J.H. and Heywood, R.H., A five-minute field test for on-farm detection of pre-harvest sprouting in wheat, Crop Sci., 2000, vol. 40, no. 3, pp. 742—756. https://doi.org/10.2135/cropsci2000.403742x

    Article  Google Scholar 

  37. Gavazza, M.I.A., Bassoi, M.C., de Carvalho, T.C., et al., Methods for assessment of pre-harvest sprouting in wheat cultivars, Pesqui. Agropecu. Bras., 2012, vol. 47, no. 7, pp. 928—933. https://doi.org/10.1590/S0100-204X2012000700008

    Article  Google Scholar 

  38. Rubets, V.S., Nguen, T.T.L., and Pylnev, V.V., System for selection evaluation of winter triticale tolerance to germination on root, Izv. S-kh. Akad. im. K. A. Timiryazeva, 2012, no. 1, pp. 132—141.

  39. King, R.W. and von Wettstein-Knowles, P., Epicuticular waxes and regulation of ear wetting and pre-harvest sprouting in barley and wheat, Euphytica, 2000, vol. 112, pp. 157—166. https://doi.org/10.1023/A:1003832031695

    Article  Google Scholar 

  40. Ram, M.S., Dowell, F.E., Seitz, L., and Lookhart, G., Development of standard procedures for a simple, rapid test to determine wheat color class, Cereal Chem., 2002, vol. 79, no. 2, pp. 230—237. https://doi.org/10.1094/CCHEM.2002.79.2.230

    Article  CAS  Google Scholar 

  41. Mares, D.J. and Mrva, K., Wheat grain preharvest sprouting and late maturity alpha-amylase, Planta, 2014, vol. 240, pp. 1167—1178. https://doi.org/10.1007/s00425-014-2172-5

    Article  CAS  PubMed  Google Scholar 

  42. Lang, J., Fu, Y., Zhou, Y., et al., Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat, New Phytol., 2021, vol. 230, pp. 1940—1952. https://doi.org/10.1111/nph.17312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, M., Zhang, D., Liu, S., et al., Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat, BMC Genomics, 2016, vol. 17, p. 794. https://doi.org/10.1186/s12864-016-3148-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gfeller, F. and Svejda, F., Inheritance of post-harvest seed dormancy and kernel colour in spring wheat lines, Can. J. Plant Sci., 1960, vol. 40, no. 1, pp. 1—6. https://doi.org/10.4141/cjps60-001

    Article  Google Scholar 

  45. De Pauw, R.M. and McCaig, T.N., Recombining dormancy and white seed color in a spring wheat cross, Can. J. Plant Sci., 1983, vol. 63, no. 3, pp. 581—589. https://doi.org/10.4141/cjps83-074

    Article  Google Scholar 

  46. He, Z.T., Chen, X.L., and Han, Y.P., Progress on preharvest sprouting resistance in white, J. Triticeae Crops, 2000, vol. 20, no. 2, pp. 84—87.

    Google Scholar 

  47. McEwan, J.M., The sprouting reaction of stocks with single genes for red grain colour derived from hilgendorf 61 wheat, Cereal Res. Commun., 1980, vol. 8, no. 1, pp. 261—264.

    Google Scholar 

  48. Warner, R.L., Kudrna, D.A., Spaeth, S.C., and Jones, S.S., Dormancy in white-grain mutations of Chinese spring wheat (Triticum aestivum L.), Seed Sci. Res., 2000, vol. 10, no. 1, pp. 51—60. https://doi.org/10.1017/S0960258500000064

    Article  Google Scholar 

  49. Groos, C., Gay, G., Perretant, M.R., et al., Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross, Theor. Appl. Genet., 2002, vol. 104, no. 1, pp. 39—47. https://doi.org/10.1007/s001220200004

    Article  CAS  PubMed  Google Scholar 

  50. King, R.W., Physiology of sprouting resistance, in Pre-Harvest Field Sprouting in Cereals, Derera, N.F., Ed., Boca Raton: CRC Press, 1989, pp. 27—60.

    Google Scholar 

  51. Ji, T., Penning, B., and Baik, B.K., Pre-harvest sprouting resistance of soft winter wheat varieties and associated grain characteristics, J. Cereal Sci., 2018, vol. 83, pp. 110—115. https://doi.org/10.1016/j.jcs.2018.08.006

    Article  Google Scholar 

  52. Gerjets, T., Scholefield, D., Foulkes, M.J., et al., An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses, J. Exp. Bot., 2010, vol. 61, no. 2, pp. 597—607.

    Article  CAS  PubMed  Google Scholar 

  53. He, J., Zhang, D., Chen, X., et al., Identification of QTLs and a candidate gene for reducing pre-harvest sprouting in Aegilops tauschii—Triticum aestivum chromosome segment substitution lines, Int. J. Mol. Sci., 2021, vol. 22, p. 3729. https://doi.org/10.3390/ijms22073729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lan, X.J., Wei, Y.M., Liu, D.C., et al., Inheritance of seed dormancy in Tibetan semiwild wheat accession Q1028, J. Appl. Genet., 2005, vol. 46, no. 2, pp. 133—138.

    PubMed  Google Scholar 

  55. Sun, Y.W., Jones, H.D., Yang, Y., et al., Haplotype analysis of viviparous-1 gene in CIMMYT elite bread wheat germplasm, Euphytica, 2012, vol. 186, pp. 25—43. https://doi.org/10.1007/s10681-011-0482-2

    Article  CAS  Google Scholar 

  56. Bazhenov, M.S., Divashuk, M.G., Pylinev, V.V., et al., Analysis of winter triticale samples for the presence of chromosomal substitutions and their association with the tolerance to germination on root, Izv. S-kh. Akad. im. K.A. Timiryazeva, 2011, no. 2, pp. 20—26.

  57. Biddulph, T.B., Plummer, J.A., Setter, T.L., and Mares, D.J., Seasonal conditions influence dormancy and preharvest sprouting tolerance of wheat (Triticum aestivum L.) in the field, Field Crops Res., 2008, vol. 107, no. 2, pp. 116—128. https://doi.org/10.1016/j.fcr.2008.01.003

    Article  Google Scholar 

  58. Walker-Simmons, M., Enhancement of ABA responsiveness in wheat embryos by high temperature, Plant Cell Environ., 1988, vol. 11, no. 8, pp. 769—775. https://doi.org/10.1111/j.1365-3040.1988.tb01161.x

    Article  CAS  Google Scholar 

  59. Hagemann, M.G. and Ciha, A.J., Evaluation of methods used in testing winter wheat susceptibility to preharvest sprouting, Crop Sci., 1984, vol. 24, no. 2, pp. 249—254. https://doi.org/10.2135/cropsci1984.0011183X00240-0020010x

    Article  Google Scholar 

  60. Kulwal, P.L., Mir, R.R., Kumar, S., and Gupta, P.K., QTL analysis and molecular breeding for seed dormancy and pre-harvest sprouting tolerance in bread wheat, J. Plant Biol., 2010, vol. 37, no. 1, pp. 59—74.

    Google Scholar 

  61. Perten, H., Application of the falling number method for evaluating α-amylase activity, Cereal Chem., 1964, vol. 41, no. 3, pp. 127—140.

    CAS  Google Scholar 

  62. Hagberg, S., A rapid method for determining alpha-amylase activity, Cereal Chem., 1960, vol. 37, p. 218.

    CAS  Google Scholar 

  63. Martinez, S.A., Godoy, J., Huang, M., et al., Genome-wide association map** for tolerance to pre-harvest sprouting and low falling numbers in wheat, Front. Plant Sci., 2018, vol. 9, p. 141. https://doi.org/10.3389/fpls.2018.00141

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lunn, G.D., Major, B.J., Kettlewell, P.S., and Scott, R.K., Mechanisms leading to excess alpha-amylase activity in wheat (Triticum aestivum L.) grain in the UK, J. Cereal Sci., 2001, vol. 33, pp. 313—329. https://doi.org/10.1006/jcrs.2001.0369

    Article  CAS  Google Scholar 

  65. Trethowan, R.M., Evaluation and selection of bread wheat (Triticum aestivum L.) for preharvest sprouting tolerance, Aust. J. Agric. Res., 1995, vol. 46, no. 3, pp. 463—474. https://doi.org/10.1071/AR9950463

    Article  Google Scholar 

  66. Olaerts, H., Vandekerckhove, L., and Courtin, C.M., A closer look at the bread making process and the quality of bread as a function of the degree of preharvest sprouting of wheat (Triticum aestivum), J. Cereal Sci., 2018, vol. 80, pp. 188—197. https://doi.org/10.1016/j.jcs.2018.03.004

    Article  Google Scholar 

  67. Kottearachchi, N.S., Uchino, N., Kato, K., and Miura, H., Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs, Euphytica, 2006, vol. 152, pp. 421—428. https://doi.org/10.1007/s10681-006-9231-3

    Article  CAS  Google Scholar 

  68. Gale, M.D. and Ainsworth, C.C., The relationship between α-amylase species found in develo** and germinating wheat grain, Biochem. Genet., 1984, vol. 22, pp. 1031—1036. https://doi.org/10.1007/bf00499629

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, Q. and Li, C., Comparisons of copy number, genomic structure, and conserved motifs for α-amylase genes from barley, rice and wheat, Front. Plant Sci., 2017, vol. 8, р. 1727. https://doi.org/10.3389/fpls.2017.01727

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gale, M.D., Law, C.N., Chojecki, A.J., and Kempton, R.A., Genetic control of a-amylase production in wheat, Theor. Appl. Genet., 1983, vol. 64, pp. 309—316. https://doi.org/10.1007/bf00274170

    Article  CAS  PubMed  Google Scholar 

  71. Mrva, K., Wallwork, M., and Mares, D.J., α-Amylase and programmed cell death in aleurone of ripening wheat grains, J. Exp. Bot., 2006, vol. 57, no. 4, pp. 877—885. https://doi.org/10.1093/jxb/erj072

    Article  CAS  PubMed  Google Scholar 

  72. Laethauwer, S.D., Riek, J.D., Stals, I., et al., α-Amylase gene expression during kernel development in relation to pre-harvest sprouting in wheat and triticale, Acta Physiol. Plant., 2013, vol. 35, pp. 2927—2938. https://doi.org/10.1007/s11738-013-1323-9

    Article  CAS  Google Scholar 

  73. van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., et al., Properties and applications of starch-converting enzymes of the α-amylase family, J. Biotechnol., 2002, vol. 94, no. 2, pp. 137—155. https://doi.org/10.1016/S0168-1656(01)00407-2

    Article  CAS  PubMed  Google Scholar 

  74. Szafrańska, A., Comparison of alpha-amylase activity of wheat flour estimated by traditional and modern techniques, Acta Agrophys., 2014, vol. 21, no. 4, pp. 493—505.

    Google Scholar 

  75. Antoņenko, K., Duma, M., Kreicbergs, V., and Kunkulberga, D., The influence of microelements selenium and copper on the rye malt amylase activity and flour technological properties, Agron. Res., 2016, vol. 14, no. S2, pp. 1261—1270.

    Google Scholar 

  76. Newberry, M., Zwart, A.B., Whan, A., et al., Does late maturity alpha-amylase impact wheat baking quality, Front Plant Sci., 2018, vol. 9, no. 1356. https://doi.org/10.3389/fpls.2018.01356

  77. Visvanathan, R., Qader, M., Jayathilake, C., et al., Critical review on conventional spectroscopic α -amylase activity detection methods: merits, demerits, and future prospects, J. Sci. Food Agric., 2020, vol. 100, no. 7, pp. 2836—2847. https://doi.org/10.1002/jsfa.10315

    Article  CAS  PubMed  Google Scholar 

  78. AACC I, The Approved Methods of Analysis: Method 22–0201 Measurement of Alpha-Amylase in Plant and Microbial Materials Using the Ceralpha Method, St. Paul, MN: AACC International, 11th ed. https://doi.org/10.1094/AACCIntMethod-22-02.01

  79. Amylase Test: Instructions for Use, 2021. http://www.phadebas.com.

  80. Mathewson, P.R. and Pomeranz, Y., Detection of sprouted wheat by a rapid colorimetric determination of alpha-amylase, J. Assoc. Of. Anal. Chem., 1977, vol. 60, no. 1, pp. 16—20. https://doi.org/10.1093/jaoac/60.1.16

    Article  CAS  Google Scholar 

  81. Trethowan, R.M., Pena, R.J., and Pfeiffer, W.H., Evaluation of pre-harvest sprouting in triticale compared with wheat and rye using a line source rain gradient, Aust. J. Agric. Res., 1994, vol. 45, no. 1, pp. 65—74. https://doi.org/10.1071/AR9940065

    Article  Google Scholar 

  82. Ichinose, Y., Kuwabara, T., and Hakoyama, S., Germination of wheat grains at various temperatures in relation to the activities of a-amylase and endoprotease, Plant Prod. Sci., 2002, vol. 5, no. 2, pp. 110—116. https://doi.org/10.1626/pps.5.110

    Article  CAS  Google Scholar 

  83. Stanojeska, M. and Sokoloski, B., Creating the correlation model at flour T-400 among Amylograph units and γ slope of Mixolab curve, J. Hyg. Eng. Des., 2012, vol. 1, pp. 247—250.

    Google Scholar 

  84. Wiwart, M., Szafranska, A., Wachowska, U., and Suchowilska, E., Quality parameters and rheological dough properties of fifteen spelt (Triticum spelta L.) varieties cultivated today, Cereal Chem., 2017, vol. 94, no. 6, pp. 1037—1044. https://doi.org/10.1094/CCHEM-05-17-0097-R

    Article  CAS  Google Scholar 

  85. Flintham, J., Adlam, R., Bassoi, M., et al., Map** genes for resistance to sprouting damage in wheat, Euphytica, 2002, vol. 126, pp. 39—45. https://doi.org/10.1023/A:1019632008244

    Article  CAS  Google Scholar 

  86. Cabral, A.L., Jordan, M.C., McCartney, C.A., et al., Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.), BMC Plant Biol., 2014, vol. 14, no. 340. https://doi.org/10.1186/s12870-014-0340-1

  87. Fakthongphan, J., Bai, G., Amand, P.S., et al., Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW), Theor. Appl. Genet., 2016, vol. 129, pp. 419—430. https://doi.org/10.1007/s00122-015-2636-4

    Article  CAS  PubMed  Google Scholar 

  88. Gupta, P.K., Balyan, H.S., Sharma, S., and Kumar, R., Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.), Theor. Appl. Genet., 2020, vol. 133, pp. 1569–1602. https://doi.org/10.1007/s00122-020-03583-3

    Article  PubMed  Google Scholar 

  89. Tai, L., Wang, H.J., Xu, X.J., et al., Pre-harvest sprouting in cereals: genetic and biochemical mechanisms, J. Exp. Bot., 2021, vol. 72, no. 8, pp. 2857—2876. https://doi.org/10.1093/jxb/erab024

    Article  CAS  PubMed  Google Scholar 

  90. Tanksley, S.D., Map** polygenes, Annu. Rev. Genet., 1993, vol. 27, pp. 205—233. https://doi.org/10.1146/annurev.ge.27.120193.001225

    Article  CAS  PubMed  Google Scholar 

  91. Mares, D., Mrva, K., Cheong, J., et al., A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin, Theor. Appl. Genet., 2005, vol. 111, pp. 1357—1364. https://doi.org/10.1007/s00122-005-0065-5

    Article  CAS  PubMed  Google Scholar 

  92. Torada, A., Ikeguchi, S., and Koike, M., Map** and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat, Euphytica, 2005, vol. 143, pp. 251—255. https://doi.org/10.1007/s10681-005-7872-2

    Article  CAS  Google Scholar 

  93. Ogbonnaya, F.C., Imtiaz, M., Ye, G., et al., Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955, Theor. Appl. Genet., 2008, vol. 116, pp. 891—902. https://doi.org/10.1007/s00122-008-0712-8

    Article  CAS  PubMed  Google Scholar 

  94. Torada, A., Koike, M., Ogawa, T., Causal gene for seed dormancy on wheat chromosome 4A encodes a map kinase kinase, Curr. Biol., 2016, vol. 26, no. 6, pp. 782—787. https://doi.org/10.1016/j.cub.2016.01.063

    Article  CAS  PubMed  Google Scholar 

  95. Hoecker, U., Vasil, I.K., and McCarty, D.R., Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize, Genes Dev., 1995, vol. 9, pp. 2459—2469. https://doi.org/10.1101/gad.9.20.2459

    Article  CAS  PubMed  Google Scholar 

  96. Paek, N.C., Lee, B.M., Bai, D.G., and Smith, J.D., Inhibition of germination gene expression by Viviparous-1 and ABA during maize kernel development, Mol. Cells, 1998, vol. 8, pp. 336—342.

    CAS  PubMed  Google Scholar 

  97. Wilkinson, M.D., McKibbin, R.S., Bailey, P.C., et al., Use of comparative molecular genetics to study pre harvest sprouting in wheat, Euphytica, 2002, vol. 126, pp. 27—33. https://doi.org/10.1023/A:1019627807335

    Article  CAS  Google Scholar 

  98. Chang, C., Zhang, H.P., Feng, J.M., et al., Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm, Mol. Breed., 2010, vol. 25, pp. 481—490. https://doi.org/10.1007/s11032-009-9346-z

    Article  Google Scholar 

  99. Chang, C., Zhang, H.-P., Zhao, Q.-X., et al., Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat, Euphytica, 2011, vol. 179, pp. 343—353. https://doi.org/10.1007/s10681-011-0348-7

    Article  CAS  Google Scholar 

  100. Sun, Y.W., Nie, L.N., Ma, Y.Z., et al., Cloning and functional analysis of Viviparous-1 promoter in wheat, Acta Agron. Sin., 2011, vol. 37, no. 10, pp. 1743—1751. https://doi.org/10.3724/SP.J.1006.2011.01743

    Article  CAS  Google Scholar 

  101. Flintham, J.E., Different genetic components control coat-imposed and embryo-imposed dormancy in wheat, Seed Sci. Res., 2000, vol. 10, no. 1, pp. 43—50. https://doi.org/10.1017/S0960258500000052

    Article  Google Scholar 

  102. Santos, L.T., Pinto, R.J.B., Franco, F.A., and Schuster, I., Inheritance and potential use of grain color in the identification of genotypes resistant to pre-harvest sprouting in wheat, Crop Breed. Appl. Biotechnol., 2010, vol. 10, no. 3, pp. 218—224. https://doi.org/10.1590/S1984-70332010000300006

    Article  Google Scholar 

  103. Metzger, R.J. and Silbaugh, B.A., Locations of genes for seed coat colour in hexaploid wheat, Triticum aestivum L, Crop Sci., 1970, vol. 10, no. 5, pp. 495—496. https://doi.org/10.2135/cropsci1970.0011183X001000-050012x

    Article  Google Scholar 

  104. Mares, D. and Himi, E., The role of TaMYB10-A1 of wheat (Triticum aestivum L.) in determining grain coat colour and dormancy phenotype, Euphytica, 2021, vol. 217, no. 89. https://doi.org/10.1007/s10681-021-02826-8

  105. Nakamura, S., Abe, F., Kawahigashi, H., et al., A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination, Plant Cell, 2011, vol. 23, no. 9, pp. 3215—3229. https://doi.org/10.1105/tpc.111.088492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, S., Sehgal, S.K., Li, J., et al., Cloning and characterization of a critical regulator for pre-harvest sprouting in wheat, Genetics, 2013, vol. 195, no. 1, pp. 263—273. https://doi.org/10.1534/genetics.113.152330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, Y., Miao, X., **a, X., and He, Z., Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker, Theor. Appl. Genet., 2014, vol. 127, pp. 855—866. https://doi.org/10.1007/s00122-014-2262-6

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, Y., **a, X., and He, Z., The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces, Theor. Appl. Genet., 2017, vol. 130, pp. 81—89. https://doi.org/10.1007/s00122-016-2793-0

    Article  PubMed  Google Scholar 

  109. Roy, J.K., Prasad, M., and Varshney, R.K., Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with pre-harvest sprouting tolerance, Theor. Appl. Genet., 1999, vol. 99, pp. 336—340.

    Article  Google Scholar 

  110. Yang, Y., Zhao, X.L., **a, L.Q., et al., Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats, Theor. Appl. Genet., 2007, vol. 115, pp. 971—980. https://doi.org/10.1007/s00122-007-0624-z

    Article  CAS  PubMed  Google Scholar 

  111. Yang, Y., Zhang, C.L., Liu, S.X., et al., Characterization of the rich haplotypes of Viviparous-1A in Chinese wheats and development of a novel sequence-tagged site marker for pre-harvest sprouting resistance, Mol. Breed., 2014, vol. 33, pp. 75—88. https://doi.org/10.1007/s11032-013-9935-8

    Article  CAS  Google Scholar 

  112. Chen, C.X., Cai, S.B., and Bai, G.H., A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace, Mol. Breed., 2007, vol. 21, pp. 351—358. https://doi.org/10.1007/s11032-007-9135-5

    Article  CAS  Google Scholar 

  113. Yang, Y., Zhang, C.L., Chen, X.M., et al., Identification and validation of molecular markers for PHS tolerance in red-grained spring wheat, J. Triticeae Crops, 2011, vol. 31, no. 1, pp. 54—59.

    CAS  Google Scholar 

  114. Yang, Y., Zhao, X.L., Zhang, Y., et al., Evaluation and validation of four molecular markers associated with pre-harvest sprouting tolerance in Chinese wheats, Acta Agron. Sin., 2008, vol. 34, pp. 17—24. https://doi.org/10.3724/SP.J.1006.2008.00017

    Article  CAS  Google Scholar 

  115. Liu, S., Sehgal, S.K., Li, J., et al., Cloning and characterization of a critical regulator for pre-harvest sprouting in wheat, Genetics, 2013, vol. 195, no. 1, pp. 263—273. https://doi.org/10.1534/genetics.113.152330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, Y., **a, X., and He, Z., The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces, Theor. Appl. Genet., 2017, vol. 130, pp. 81—89. https://doi.org/10.1007/s00122-016-2793-0

    Article  PubMed  Google Scholar 

  117. Zhang, H.P., Chang, C., You, G.X., et al., Identification of molecular markers associated with seed dormancy in mini core collections of Chinese wheat and landraces, Acta Agron. Sin., 2010, vol. 36, no. 10, pp. 1649—1656. https://doi.org/10.1016/S1875-2780(09)60077-8

    Article  CAS  Google Scholar 

  118. Wang, Y., Wang, X.L., Meng, J.Y., et al., Characterization of Tamyb10 allelic variants and development of STS marker for pre-harvest sprouting resistance in Chinese bread wheat, Mol. Breed., 2016, vol. 36, no. 148. https://doi.org/10.1007/s11032-016-0573-9

  119. **a, L.Q., Yang, Y., Ma, Y.Z., et al., What can the Viviparous-1 gene tell us about wheat pre-harvest sprouting, Euphytica, 2009, vol. 168, pp. 385—394. https://doi.org/10.1007/s10681-009-9928-1

    Article  CAS  Google Scholar 

  120. Bespalova, L.A., Vasilyev, A.V., Ablova, I.B., et al., The use of molecular markers in wheat breeding at the Lukyanenko Agricultural Research Institute, Russ. J. Genet.: Appl. Res., 2012, vol. 2, no. 4, pp. 286—290. https://doi.org/10.1134/S2079059712040028

    Article  Google Scholar 

  121. Vanzetti, L.S., Yerkovich, N.Y., Chialvo, E., Genetic structure of Argentinean hexaploid wheat germplasm, Genet. Mol. Biol., 2013, vol. 36, no. 3, pp. 391—399.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Rasheed, A., Wen, W., Gao, F., et al., Development and validation of KASP assays for functional genes underpinning key economic traits in wheat, Theor. Appl. Genet., 2016, vol. 129, pp. 1843—1860. https://doi.org/10.1007/s00122-016-2743-x

    Article  CAS  PubMed  Google Scholar 

  123. Guo, F.Z., Liang, W.G., Fan, Q.Q., et al., The distribution and evolution of allelic variation of Vp1B3 in Shandong wheat, J. Triticeae Crops, 2009, vol. 29, pp. 575—578.

    CAS  Google Scholar 

  124. Zhao, B., Wan, Y.X., and Wang, R., Screening of wheat cultivar resources with pre-harvest sprouting resistance, J. Anhui Agric. Sci., 2010, vol. 38, pp. 8900–8902.

    CAS  Google Scholar 

  125. Miao, X.L., Wang, D.S., **a, L.Q., et al., Analysis on the mechanism of pre-harvest sprouting resistance in white-grain wheat, J. Triticeae Crops, 2011, vol. 31, pp. 741—746.

    CAS  Google Scholar 

  126. Leonova, I.N., Molecular markers: implementation in crop plant breeding for identification, introgression and gene pyramiding, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 6, pp. 464—473. https://doi.org/10.1134/S2079059713060051

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation, project no. 21-76-30003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedyaeva.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Bibov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, A.V., Salina, E.A. & Shumny, V.K. Pre-Harvest Sprouting in Soft Winter Wheat (Triticum aestivum L.) and Evaluation Methods. Russ J Genet 59, 1–11 (2023). https://doi.org/10.1134/S1022795423010052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423010052

Keywords:

Navigation