Log in

Widely Applicable PCR Markers for Sex Identification in Birds

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

To aid in avian sex determination if birds are not sexually dimorphic and/or they are sexually immature, several molecular assays involving the polymerase chain reaction (PCR) have been developed. To test in a variety of domestic and wild avian species applicability of five sexing assays: previously described four assays based on nucleotide sequence differences between the Z and W copy of the chicken chromodomain-helicase-DNA-binding protein gene (CHD1Z and CHD1W), and a new sexing marker using the ubiquitin associated protein 2 (UBAP2) gene sequence. At least one molecular sexing marker was successful in 84 out of 88 examined species across 13 avian orders. These assays may be useful in breeding management of domestic and wild birds as well as in studies of avian ecology, population genetics, embryology and transgenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Millar, C.D., Lambert, D.M., Anderson, S. and Halverson, J.L., Molecular sexing of the communally breeding pukeko: an important ecological tool, Mol. Ecol., 1996, vol. 5, no. 2, pp. 289—293. https://onlinelibrary.wiley.com/doi/10.1046/j.1365-294X.1996.00076.x.

    Article  CAS  PubMed  Google Scholar 

  2. Ellegren, H. and Fridolfsson, A.K., Male-driven evolution of DNA sequences in birds, Nat. Genet., 1997, vol. 17, no. 2, pp. 182—184. https://doi.org/10.1038/ng1097-182.

    Article  CAS  PubMed  Google Scholar 

  3. Lessells, K., More mutations in males, Nature, 1997, vol. 390, no. 6657, pp. 236—237. https://doi.org/10.1038/36745.

    Article  CAS  PubMed  Google Scholar 

  4. Kahn, N.W. and Quinn, T.W., Male-driven evolution among Eoaves? A test of the replicative division hypothesis in a heterogametic female (ZW) system, J. Mol. Evol., 1999, vol. 49, no. 6, pp. 750—759. https://doi.org/10.1007/PL00006597.

    Article  CAS  PubMed  Google Scholar 

  5. Robertson, B.C., Millar, C.D., Minot, E.O., et al., Sexing the critically endangered kakapo Strigops habroptilus, Emu, 2000, vol. 100, no. 4, pp. 336—339. https://doi.org/10.1071/MU00056.

    Article  Google Scholar 

  6. Bermudez-Humaran, L.G., Garcia-Garcia, A., Leal-Garza, C.H., et al., Molecular sexing of monomorphic endangered Ara birds, J. Exp. Zool., 2002, vol. 292, no. 7, pp. 677—680. https://doi.org/10.1002/jez.10070.

    Article  CAS  PubMed  Google Scholar 

  7. Romanov, M.N. and Bondarenko, Y.V., Use of autosexing in waterfowl breeding and production, in Proceedings of 10th European Symposium on Waterfowl, Halle, 1995, pp. 473—476.

  8. Wang, N. and Shoffner, R.N., Trypsin G- and C-banding for interchange analysis and sex identification in the chicken, Chromosoma, 1974, vol. 47, no. 1, pp. 61—69. https://doi.org/10.1007/BF00326271.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura, D., Tiersch, T.R., Douglass, M. and Chandler, R.W., Rapid identification of sex in birds by flow cytometry, Cytogenet. Cell Genet., 1990, vol. 53, no. 4, pp. 201—205. https://doi.org/10.1159/000132930.

    Article  CAS  PubMed  Google Scholar 

  10. De Vita, R., Cavallo, D., Eleuteri, P. and Dell’Omo, G., Evaluation of interspecific DNA content variations and sex identification in Falconiformes and Strigiformes by flow cytometric analysis, Cytometry, 1994, vol. 16, no. 4, pp. 346—350. https://doi.org/10.1002/cyto.990160409.

    Article  CAS  PubMed  Google Scholar 

  11. Kagami, H., Nakamura, H. and Tomita, T., Sex identification in chickens by means of the presence of the W chromosome specific repetitive DNA units, Jpn. Poult. Sci., 1990, vol. 27, no. 5, pp. 379—384. https://doi.org/10.2141/jpsa.27.379.

    Article  CAS  Google Scholar 

  12. Cassar, G., Mohammed, M., John, T.M., et al., Differentiating between parthenogenetic and “positive development” embryos in turkeys by molecular sexing, Poult. Sci., 1998, vol. 77, no. 10, pp. 1463—1468. https://doi.org/10.1093/ps/77.10.1463.

    Article  CAS  PubMed  Google Scholar 

  13. D’Costa, S. and Petitte, J.N., Sex identification of turkey embryos using a multiplex polymerase chain reaction, Poult. Sci., 1998, vol. 77, no. 5, pp. 718—721. https://doi.org/10.1093/ps/77.5.718.

    Article  PubMed  Google Scholar 

  14. Trefil, P., Bruno, M.M., Mikus, T. and Thoraval, P., Sexing of chicken feather follicle, blastodermal and blood cells, Folia Biol. (Praha), 1999, vol. 45, no. 6, pp. 253—256.

    CAS  Google Scholar 

  15. Ogawa, A., Solovei, I., Hutchison, N., et al., Molecular characterization and cytological map** of a non-repetitive DNA sequence region from the W chromosome of chicken and its use as a universal probe for sexing Carinatae birds, Chromosome Res., 1997, vol. 5, no. 2, pp. 93—101. https://doi.org/10.1023/A:1018461906913.

    Article  CAS  PubMed  Google Scholar 

  16. Ellegren, H., First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds, Proc. R. Soc. Lond. B Biol. Sci., 1996, vol. 263, no. 1377, pp. 1635—1641. https://doi.org/10.1098/rspb.1996.0239.

    Article  CAS  Google Scholar 

  17. Griffiths, R., Daan, S. and Dijkstra, C., Sex identification in birds using two CHD genes, Proc. R. Soc. Lond. B Biol. Sci., 1996, vol. 263, no. 1374, pp. 1251—1256. https://doi.org/10.1098/rspb.1996.0184.

    Article  CAS  Google Scholar 

  18. Griffiths, R. and Korn, R.M., A CHD1 gene is Z chromosome linked in the chicken Gallus domesticus, Gene, 1997, vol. 197, nos. 1—2, pp. 225—229. https://doi.org/10.1016/S0378-1119(97)00266-7.

    Article  CAS  PubMed  Google Scholar 

  19. Griffiths, R. and Tiwari, B., Sex of the last wild Spix’s macaw, Nature, 1995, vol. 375, no. 6531, p. 454. https://doi.org/10.1038/375454a0.

    Article  CAS  PubMed  Google Scholar 

  20. Griffiths, R., Double, M.C., Orr, K. and Dawson, R.J., A DNA test to sex most birds, Mol. Ecol., 1998, vol. 7, no. 8, pp. 1071—1075. https://doi.org/10.1046/j.1365-294x.1998.00389.x.

    Article  CAS  PubMed  Google Scholar 

  21. Kahn, N.W., St John, J. and Quinn, T.W., Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds, Auk, 1998, vol. 115, no. 4, pp. 1074—1078. https://doi.org/10.2307/4089527.

    Article  Google Scholar 

  22. Fridolfsson, A.K. and Ellegren, H., A simple and universal method for molecular sexing of non-ratite birds, J. Avian Biol., 1999, vol. 30, no. 1, pp. 116—121. https://doi.org/10.2307/3677252.

    Article  Google Scholar 

  23. Kerje, S., Sharma, P., Gunnarsson, U., et al., The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene, Genetics, 2004, vol. 168, no. 3, pp. 1507—1518. https://doi.org/10.1534/genetics.104.027995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crittenden, L.B., Provencher, L., Santangelo, L., et al., Characterization of a Red Jungle Fowl by White Leghorn backcross reference population for molecular map** of the chicken genome, Poultry Sci., 1993, vol. 72, no. 2, pp. 334—348. https://doi.org/10.3382/ps.0720334.

    Article  Google Scholar 

  25. Seutin, G., White, B.N. and Boag, P.T., Preservation of avian blood and tissue samples for DNA analyses, Can. J. Zool., 1991, vol. 69, no. 1, pp. 82—90. https://doi.org/10.1139/z91-013.

    Article  CAS  Google Scholar 

  26. Lee, M.K., Ren, C.W., Yan, B., et al., Construction and characterization of three BAC libraries for analysis of the chicken genome, Anim. Genet., 2003, vol. 34, no. 2, pp. 151—152. https://doi.org/10.1046/j.1365-2052.2003.00965_5.x.

    Article  CAS  PubMed  Google Scholar 

  27. https://web.archive.org/web/20100709231600/http://hbz7.tamu.edu/homelinks/tool/bac_content.htm.

  28. Madden, T.L., Tatusov, R.L. and Zhang, J., Applications of network BLAST server, Methods Enzymol., 1996, vol. 266, pp. 131—141.

    Article  CAS  PubMed  Google Scholar 

  29. Higgins, D.G. and Sharp, P.M., Fast and sensitive multiple sequence alignments on a microcomputer, Comput. Appl. Biosci., 1989, vol. 5, no. 2, pp. 151—153. https://doi.org/10.1093/bioinformatics/5.2.151.

    Article  CAS  PubMed  Google Scholar 

  30. Thompson, J.D., Higgins, D.G. and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4673—4680. https://doi.org/10.1093/nar/22.22.4673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lombard, V., Camon, E.B., Parkinson, H.E., et al., EMBL-Align: a new public nucleotide and amino acid multiple sequence alignment database, Bioinformatics, 2002, vol. 18, no. 5, pp. 763—764. https://doi.org/10.1093/bioinformatics/18.5.763.

    Article  CAS  PubMed  Google Scholar 

  32. Axelsson, E., Smith, N.G.C., Sundström, H., et al., Male-biased mutation rate and divergence in autosomal, Z-linked and W-linked introns of chicken and turkey, Mol. Biol. Evol., 2004, vol. 21, no. 8, pp. 1538—1547. https://doi.org/10.1093/molbev/msh157.

    Article  CAS  PubMed  Google Scholar 

  33. Lawson Handley, L.J., Ceplitis, H. and Ellegren, H., Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution, Genetics, 2004, vol. 167, no. 1, pp. 367—376. https://doi.org/10.1534/genetics.167.1.367.

    Article  CAS  Google Scholar 

  34. Sazanov, A.A., Sazanova, A.L., Stekolnikova, V.A., et al., Chromosomal localization of the UBAP2Z and UBAP2W genes in chicken, Anim. Genet., 2006, vol. 37, no. 1, pp. 72—73. https://doi.org/10.1111/j.1365-2052.2005.01392.x.

    Article  CAS  PubMed  Google Scholar 

  35. Albrecht, D.J., Sex ratio manipulation within broods of house wrens, Troglodytes aedon, Anim. Behav., 2000, vol. 59, no. 6, pp. 1227—1234. https://doi.org/10.1006/anbe.1999.1420.

    Article  CAS  PubMed  Google Scholar 

  36. Romanov, M.N., Kutnyuk, P.I. and Chernikov, V.F., Estimation of population structure and differentiation in black-headed gull by using genetic/oological parameters: 1. Analysis within an East-Ukrainian population, J. Ornithol., 1994, vol. 135, no. 1, p. 261. https://doi.org/10.1007/BF02445773.

    Article  Google Scholar 

  37. Romanov, M.N. and Dodgson, J.B., Cross-species overgo hybridization and comparative physical map** within avian genomes, Anim. Genet., 2006, vol. 37, no. 4, pp. 397—399. https://doi.org/10.1111/j.1365-2052.2006.01463.x.

    Article  CAS  PubMed  Google Scholar 

  38. Romanov, M.N., Koriabine, M., Nefedov, M., et al., Construction of a California condor BAC library and first-generation chicken—condor comparative physical map as an endangered species conservation genomics resource, Genomics, 2006, vol. 88, no. 6, pp. 711—718. https://doi.org/10.1016/j.ygeno.2006.06.005.

    Article  CAS  PubMed  Google Scholar 

  39. Romanov, M.N., Tuttle, E.M., Houck, M.L., et al., The value of avian genomics to the conservation of wildlife, BMC Genomics, 2009, vol. 10, suppl. 2, p. S10. https://doi.org/10.1186/1471-2164-10-S2-S10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Romanov, M.N., Dodgson, J.B., Gonser, R.A. and Tuttle, E.M., Comparative BAC-based map** in the white-throated sparrow, a novel behavioral model, using interspecies overgo hybridization, BMC Res. Notes, 2011, vol. 4, p. 211. https://doi.org/10.1186/1756-0500-4-211.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Narushin, V.G., Romanov, M.N. and Bogatyr, V.P., Method for preincubational prediction of embryo sex in chicken eggs, in Proceedings of the 8th World Conference on Animal Production, Seoul, 1998, vol. 1, pp. 832—833.

Download references

ACKNOWLEDGMENTS

The work was supported by grants from the United States Department of Agriculture/Cooperative State Research, Education, and Extension Service (99-35205-8566 and 2001-52100-11225) to J.B. Dodgson, and from the National Institutes of Health (R01GM084229) to E.M. Tuttle and R.A. Gonser. We are most grateful to Hans Ellegren (Uppsala University, Uppsala, Sweden) and Nate Kahn (University of Denver, Denver, CO, USA) for sharing aliquots of the sexing primers, 2550F/2718R and 1237L/1272H, respectively. We also thank Hans Ellegren for providing us with the UBAP2 sequence information, and Hans Cheng (USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI, USA) for sequencing the common quail CHD1 fragments. Natalie Dubois (Michigan State University, East Lansing, MI, USA) is acknowledged for sharing the House Wren DNA samples, and Tanya Romanov (Michigan State University, East Lansing, MI, USA) and Sarah Ford (Indiana State University, Terre Haute, IN, USA) for technical assistance. We thank Olga Krestinina (Zelenodolsk, Russia) for graphical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Romanov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, M.N., Betuel, A.M., Chemnick, L.G. et al. Widely Applicable PCR Markers for Sex Identification in Birds. Russ J Genet 55, 220–231 (2019). https://doi.org/10.1134/S1022795419020121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419020121

Keywords:

Navigation