Log in

Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare)-T. aestivum

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Alloplasmic lines combining alien nuclear and cytoplasmic genomes are convenient models for studying the mechanisms of nuclear-cytoplasmic compatibility/incompatibility. In the present study, we have investigated the correlation between the characters and state of mitochondrial (mt) and chloroplast (cp) DNA regions in alloplasmic recombinant common wheat lines with barley cytoplasm characterized by partial or total fertility. Fertility restoration in the studied lines (Hordeum vulgare)-Triticum aestivum is determined by different ratios of the genetic material of common wheat variety Pyrotrix 28, which is a fertility restorer in the cytoplasm of barley, and variety Saratovskaya 29, which is a fixer of sterility. In partially fertile lines with nuclear genomes dominated by the genetic material of Saratovskaya 29, plant growth and development are suppressed. In these lines we have identified the barley homoplasmy of cpDNA regions infA and rpoB and the heteroplasmy of the 18S/5S mt repeat and the cpDNA ycf5 region. Nuclear-cytoplasmic compatibility in lines with reduced fertility (the genetic material of Pyrotrix 28 predominates in their nuclear genomes) is associated with restoration of normal plant growth and development and the changes in the state of the studied cpDNA and mtDNA regions towards the wheat type. Thus, in fertile lines, the cpDNA regions (infA, rpoB) and the 18S/5S mt repeat were identified in the homoplasmic wheat state; though the cpDNA ycf5 region was in the heteroplasmic state, it was dominated by the wheat type of the copies. The nuclear-cytoplasmic compatibility is not broken as a result of introgression of the alien genetic material into the nuclear genome of one of the fertile lines; the plants of introgressive lines are fertile and normally developed, and the states of the cpDNA and mtDNA regions correspond to their states in fertile recombinant lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujii, S. and Toriyama, K., Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility, Plant Cell Physiol., 2008, vol. 49, pp. 1484–1494.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Kaul, M.L.H., Male Sterility in Higher Plants, Berlin: Springer-Verlag, 1988.

    Book  Google Scholar 

  3. Budar, F., Touzet, P., and De Paepe, R., The nucleomitochondrial conflict in cytoplasmic male sterilities revisited, Genetics, 2003, vol. 117, pp. 3–16.

    CAS  Google Scholar 

  4. Panaiotov, I. and Gotsov, K., Effect of cytoplasm on the hereditary variability of wheat, S.-Kh. Biol., 1975, vol. 10, no. 4, pp. 610–613.

    Google Scholar 

  5. Jiang J., Chen P., Friebe B., et al., Alloplasmic wheat—Elymus ciliaris chromosome addition lines, Genome, 1993, vol. 36, pp. 327–333.

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki, T., Nakamura, C., Mori, N., and Kaneda, C., Overexpression of mitochondrial genes in alloplasmic common wheat with a cytoplasm of wheatgrass (Agropyron trichophorum) showing depressed vigor and male sterility, Plant Mol. Biol., 1995, vol. 27, pp. 553–565.

    Article  PubMed  CAS  Google Scholar 

  7. Ogihara, Y., Kurihara, Y., Futami, K., et al., Photoperiod-sensitive cytoplasmic male sterility in wheat: nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene, Curr. Genet., 1999, vol. 36, pp. 354–362.

    Article  PubMed  CAS  Google Scholar 

  8. Sinha, P., Tomar, S.M.S., Vinod Singh, V.K., and Balyan, H.S., Genetic analysis and molecular map** of new fertility restorer gene Rf8 for Triticum timopheevii cytoplasm in wheat (Triticum aestivum L.) using SSR markers, Genetics, 2013, vol. 141, pp. 431–441.

    CAS  Google Scholar 

  9. Hossain, K.G., Riera-Lizarazu, O., Kalavacharia, V., et al., Molecular cytogenetic characterization of an alloplasmic durum wheat line with a portion of chromosome 1D of Triticum aestivum carrying the scs ae gene, Genome, 2004, vol. 47, pp. 206–214.

    Article  PubMed  CAS  Google Scholar 

  10. Asakura, N., Nakamura, C., and Ohtsuka, I., A nuclear compatibility gene, Ncc-tmp, of Triticum timopheevi for the cytoplasm of Aegilops squarrosa, Genes Genet. Syst., 1997, vol. 72, pp. 71–78.

    Article  CAS  Google Scholar 

  11. Tsukamoto, N., Asakura, N., Hattori, N., et al., Identification of paternal mitochondrial DNA sequences in the nucleus-cytoplasm hybrid of tetraploid and hexaploid wheat with D and D2 plasmon from Aegilops species, Curr. Genet., 2000, vol. 38, pp. 208–217.

    Article  PubMed  CAS  Google Scholar 

  12. Kiang, A.S., Connolly, V., McConnell, D.J., and Kavanagh, T.A., Paternal inheritance of mitochondria and chloroplasts in Festuca pratensis-Lolium perenne intergeneric hybrids, Theor. Appl. Genet., 1994, vol. 87, pp. 681–688.

    Article  PubMed  CAS  Google Scholar 

  13. Soliman, K., Fedak, G., and Allard, R.W., Inheritance of organelle DNA in barley and Hordeum × Secale intergeneric hybrids, Genome, 1987, vol. 29, pp. 867–872.

    Article  CAS  Google Scholar 

  14. Hattori, N., Kitagawa, K., Takumi, S., and Nakamura, C., Mitochondrial DNA heteroplasmy in wheat, Aegilops and their nucleus-cytoplasm hybrids, Genetics, 2002, vol. 160, no. 4, pp. 1619–1630.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Kitagawa, K., Takumi, S., and Nakamura, C., Evidence of paternal transmission of mitochondrial DNA in a nucleus-cytoplasm hybrid of timopheevi wheat, Genes. Genet. Syst., 2002, vol. 77, pp. 243–250.

    Article  PubMed  CAS  Google Scholar 

  16. Woloszynska, M., Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes-though this be madness, yet there’s method in’t, J. Exp. Bot., 2010, vol. 61, pp. 657–671.

    Article  PubMed  CAS  Google Scholar 

  17. Aksyonova, E., Sinyavskaya, M., Danilenko, N., et al., Heteroplasmy and paternally oriented shift of the organellar DNA composition in barley-wheat hybrids during backcrosses with wheat parents, Genome, 2005, vol. 48, pp. 761–769.

    Article  PubMed  CAS  Google Scholar 

  18. Kawaura, K., Saeki, A., and Masumura, T., Hereroplasmy and expression of mitochondrial genes in alloplasmic and euplasmic wheat, Genes Genet. Syst., 2011, vol. 86, pp. 249–255.

    Article  PubMed  CAS  Google Scholar 

  19. Trubacheeva, N.V., Efremova, T.T., Badaeva, E.D., et al., Production of alloplasmic and euplasmic wheat-barley ditelosomic substitution lines 7H1Lmar(7D) and analysis of the 18S/5S mitochondrial repeat in these lines, Russ. J. Genet., 2009, vol. 45, no. 12, pp. 1438–1443.

    Article  CAS  Google Scholar 

  20. Trubacheeva, N.V., Kravtsova, L.A., Devyatkina, E.P., et al., Heteroplasmic and homoplasmic states of mitochondrial and chloroplast DNA regions in progenies of distant common wheat hybrids of different origins, Russ. J. Genet.: Appl. Res., 2012, vol. 2, no. 6, pp. 494–500.

    Article  Google Scholar 

  21. Bildanova, L.L., Badaeva, E.D., Pershina, L.A., and Salina, E.A., Molecular study and C-banding of chromosomes in common wheat alloplasmic lines obtained from the backcross progeny of barley-wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42) and differing in fertility, Russ. J. Genet., 2004, vol. 40, no. 12, pp. 1383–1391.

    Article  CAS  Google Scholar 

  22. Belan, I.A., Rosseeva, L.P., Rosseev, V.M., et al., Using of alien genetic material in spring bread wheat breeding in Western Siberia, in European Cereals Genetics Co-Operative Newsletter, 2012, pp. 113–115.

    Google Scholar 

  23. Pershina, L.A., Devyatkina, E.P., Trubacheeva, N.V., et al., Characterization of fertility restoration in alloplasmic lines derived from hybridization of self-fertilized offspring of barley-wheat (Hordeum vulgare L. × Triticum aestivum L.) amphiploid with common wheat varieties Saratovskaya 29 and Pyrotrix 28, Russ. J. Genet., 2012, vol. 48, no. 12, pp. 1184–1190.

    Article  CAS  Google Scholar 

  24. Trubacheeva, N.V., Rosseeva, L.P., Belan, I.A., et al., Characteristics of common wheat cultivars of West Siberia carrying the wheat-rye 1RS.1BL translocation, Russ. J. Genet., 2011, vol. 47, no. 1, pp. 13–18.

    Article  CAS  Google Scholar 

  25. Singh, N.K., Shepherd, K.W., and McIntosh, R.A., Linkage map** of genes for resistance to leaf, steam and stripe rust and ω-secalins on the short arm of rye chromosome 1R, Theor. Appl. Genet., 1990, vol. 80, pp. 609–616.

    Article  PubMed  CAS  Google Scholar 

  26. Belan, I.A., Rosseeva, L.P., Rosseev, V.M., et al., Examination of adaptive and agronomic characters in lines of common wheat Omskaya 37 bearing translocations 1RS.1BL and 7DL-7Ai, Vavilov J. Genet. Sel., 2012, vol. 16, no. 1, pp. 178–186.

    Google Scholar 

  27. Liu, S., Yu, L.-X., Singh, R.P., et al., Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26, Theor. Appl. Genet., 2010, vol. 120, pp. 691–697.

    Article  PubMed  CAS  Google Scholar 

  28. Mago, R., Spielmeyer, W., Lawrence, J., et al., Identification and map** of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines, Theor. Appl. Genet., 2002, vol. 104, pp. 1317–1324.

    Article  PubMed  CAS  Google Scholar 

  29. Gupta, S.K., Charpe, A., Prabhu, K.V., and Haque, Q.M., Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat, Theor. Appl. Genet., 2006, vol. 113, pp. 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  30. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  31. Ausubel, M.L., Brent, R.E., Kingston, R.E., et al., Current Protocols in Molecular Biology, New York: Wiley, 1987.

    Google Scholar 

  32. Coulthart, M.B., Spencer, D.F., and Gray, M.W., Comparative analysis of a recombining-repeat-sequence family in the mitochondrial genomes of wheat (Triticum aestivum L.) and rye (Secale cereal L.), Curr. Genet., 1993, vol. 23, no. 3, pp. 255–264.

    Article  PubMed  CAS  Google Scholar 

  33. Pershina, L.A., Numerova, O.M., Belova, L.I., et al., The effect of the genotypic diversity of Hordeum vulgare L. and Triticum aestivum L. on the crossability and production of partially fertile barley-wheat hybrids, Russ. J. Genet., 1998, vol. 34, no. 10, pp. 1156–1163.

    CAS  Google Scholar 

  34. Islam, A.K.M.R., Shepherd, K.W., and Sparrow, D.H.B., Addition of individual barley chromosome to wheat, in Barley Genetics III, (Proc. 3rd Int. Barley Genet. Symp.), Garching, 1975, pp. 260–270.

    Google Scholar 

  35. Islam, A.K.M.R. and Shepherd, K.W., Substituting ability of individual barley chromosomes for wheat chromosomes, Plant Breed., 1992, vol. 109, pp. 141–150.

    Article  Google Scholar 

  36. Szakacs, E. and Molnar-Lang, M., Identification of new winter wheat-winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole “Martonvasari 9kr1”-“Igri” addition lines, Genome, 2010, vol. 53, pp. 35–44.

    Article  PubMed  CAS  Google Scholar 

  37. Pershina, L.A., Numerova, O.M., Belova, L.I., et al., Restoration of fertility in backcross progeny of barley-wheat hybrids H. vulgare L. (2n = 14) × T. aestivum L. (2n = 42) in relation to wheat genotypes involved in backcrosses, Russ. J. Genet., 1999, vol. 35, no. 2, pp. 176–183.

    CAS  Google Scholar 

  38. Pershina, L.A., Numerova, O.M., Belova, L.I., and Devyatkina, E.P., Biotechnological and cytogenetic aspects of producing new wheat genotypes using hybrids, Euphytica, 1998, vol. 100, nos. 1–3, pp. 239–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Pershina.

Additional information

Original Russian Text © L.A. Pershina, N.V. Trubacheeva, M.G. Sinyavskaya, E.P. Devyatkina, L.A. Kravtsova, 2014, published in Genetika, 2014, Vol. 50, No. 10, pp. 1154–1162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pershina, L.A., Trubacheeva, N.V., Sinyavskaya, M.G. et al. Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare)-T. aestivum . Russ J Genet 50, 1017–1024 (2014). https://doi.org/10.1134/S102279541410010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541410010X

Keywords

Navigation