Log in

Physiological Responses of Almond Genotypes to Drought Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In this study, the physiological and developmental response of ten promising almond genotypes to deficit irrigation was investigated. A factorial experiment was conducted in a completely randomized block design with three replications during 2019 and 2020 at the Temperate Fruit Research Center, Horticultural Research Institute. The first factor was ten almond genotypes, and the second factor was three levels of drought stress (–0.33 MPa as a control, 0.9 and 1.6 MPa as moderate and severe stress, respectively). The results showed that growth and physiological characteristics, such as plant height, trunk diameter at the top of the plant, length of new branch growth, and leaf yellowness, as well as chlorophyll index based on the SPAD criterion, relative leaf water content, chlorophyll fluorescence, and activity of leaf enzymes including SOD, POD, CAT, and APX, varied among the ten almond genotypes under different levels of drought stress. Higher proline, RWC, and Fv/Fm values indicated a higher ability to tolerate drought stress in almonds. The study conducted a heatmap clustering analysis to classify 10 almond genotypes based on their response to drought stress. The results showed that the genotypes were divided into three groups, with two genotypes in the first group being more sensitive to drought stress. Also, the A-7-100 genotype in the third group was found to be more tolerant and adapted to drought stress than the other genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Haider, M.S., Kurjogi, M.M., Khalil-ur-Rehman, M., Pervez, T., Songtao, J., Fiaz, M., Jogaiah, S., Wang, C., and Fang, J., Drought stress revealed physiological, biochemical and gene-expressional variations in ‘Yoshihime’ peach (Prunus persica L) cultivar, J. Plant Interact., 2018, vol. 13, p. 83. https://doi.org/10.1080/17429145.2018.1432772

    Article  CAS  Google Scholar 

  2. Khoyerdi, F.F., Shamshiri, M.H., and Estaji, A., Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress, Sci. Hortic., 2016, vol. 198, p. 44. https://doi.org/10.1016/j.scienta.2015.11.028

    Article  CAS  Google Scholar 

  3. Ferioun, M., Srhiouar, N., Bouhraoua, S., El Ghachtouli, N., and Louahlia, S., Physiological and biochemical changes in moroccan barley (Hordeum vulgare L.) cultivars submitted to drought stress, Heliyon, 2023, vol. 9, p. 32. https://doi.org/10.1016/j.heliyon.2023.e13643

    Article  CAS  Google Scholar 

  4. FAO, World Food and Agriculture—Statistical Yearbook, 2021.

  5. Alotaibi, B.A., Baig, M.B., Najim, M.M.M., Shah, A.A., and Alamri, Y.A., Water scarcity management to ensure food scarcity through sustainable water resources management in Saudi Arabia, Sustainability, 2023, vol. 15, p. 10648.

    Article  Google Scholar 

  6. Fang, Y. and **ong, L., General mechanisms of drought response and their application in drought resistance improvement in plants, Cell. Mol. Life Sci., 2015, vol. 72, p. 673. https://doi.org/10.1007/s00018-014-1767-0

    Article  CAS  PubMed  Google Scholar 

  7. Gerbi, H., Paudel, I., Zisovich, A., Sapir, G., Ben-Dor, S., and Klein, T., Physiological drought resistance mechanisms in wild species vs. rootstocks of almond and plum, Trees – Structure and Function, 2022, vol. 36, p. 669. https://doi.org/10.1007/s00468-021-02238-0

    Article  Google Scholar 

  8. Nguyen, H.T., Meir, P., Sack, L., Evans, J.R., Oliveira, R.S., and Ball, M.C., Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: Integration of leaf structure, osmotic adjustment and access to multiple water sources, Plant, Cell Environ., 2017, vol. 40, p. 1576.

    Article  CAS  PubMed  Google Scholar 

  9. dos Santos, T.B., Ribas, A.F., de Souza, S.G.H., Budzinski, I.G.F., and Domingues, D.S., Physiological responses to drought, salinity, and heat stress in plants: A review, Stresses, 2022, vol. 2, p. 113. https://doi.org/10.3390/stresses2010009

    Article  Google Scholar 

  10. Rouhi, V., Samson, R., Lemeur, R., and Damme, P.Van., Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery, Environ. Exp. Bot., 2007, vol. 59, p. 117. https://doi.org/10.1016/j.envexpbot.2005.10.001

    Article  CAS  Google Scholar 

  11. Vitagliano, C. and Sebastiani, L., Physiological and biochemical remarks on environmental stress in olive (Olea europaea L.), Acta Hort., 2002, vol. 14, p. 435. https://doi.org/10.17660/ActaHortic.2002.586.89

  12. Martínez-García, P.J., Hartung, J., de los Cobos, F.P., Martínez-García, P., Jalili, S., Sánchez-Roldán, J.M., Rubio, M., Dicenta, F., and Martínez-Gómez, P., Temporal response to drought stress in several prunus rootstocks and wild species, Agronomy, 2020, vol. 10, p. 1383. https://doi.org/10.3390/agronomy10091383

    Article  Google Scholar 

  13. Jiménez, S., Dridi, J., Gutiérrez, D., Moret, D., Irigoyen, J.J., Moreno, M.A., and Gogorcena, Y., Physiological, biochemical and molecular responses in four prunus rootstocks submitted to drought stress, Tree Physiol., 2013, vol. 33, p. 1061. https://doi.org/10.1093/treephys/tpt074

    Article  CAS  PubMed  Google Scholar 

  14. Rabbani, M. and Kazemi, F., Water need and water use efficiency of two plant species in soil-containing and soilless substrates under green roof conditions, J. Environ. Manage., 2022, vol. 302, p. 113950. https://doi.org/10.1016/j.jenvman.2021.113950

    Article  CAS  PubMed  Google Scholar 

  15. Gindaba, J., Rozanov, A., and Negash, L., Response of seedlings of two eucalyptus and three deciduous tree species from Ethiopia to severe water stress, For. Ecol. Manage., 2004, vol. 201, p. 119.

    Article  Google Scholar 

  16. Gholizadeh, A., Amin, M.S.M., Anuar, A.R., and Aimrun, W., Evaluation of SPAD chlorophyll meter in two different rice growth stages and its temporal variability, Eur. J. Sci. Res., 2009, vol. 37, p. 591.

    Google Scholar 

  17. Baker, N.R., and Rosenqvist, E., Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities, J. Exp. Bot., 2004, vol. 55, p. 1607. https://doi.org/10.1093/jxb/erh196

    Article  CAS  PubMed  Google Scholar 

  18. Yang, C.M., Chang, K.W., Yin, M.H., and Huang, H.M., Methods for the determination of the chlorophylls and their derivatives, Taiwania, 1998, vol. 43, p. 116. https://doi.org/10.6165/tai.1998.43(2).116

    Article  Google Scholar 

  19. Lichtenthaler, H.K. and Wellburn, A.R., Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochem. Soc. Trans., 1983, vol. 11, p. 591. https://doi.org/10.1042/bst0110591

    Article  CAS  Google Scholar 

  20. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  21. Masomi, S.H., Imani, A., Seyfzade, S., and Zakerin, H.R., Effect of drought-induced stress by PEG6000 on physiological and morphological traits of chickpea (Cicer arietinum L.) seed germination in order to assortment of drought tolerant cultivars, J. Plant Process Function, 2023, vol. 11, p. 1.

    Google Scholar 

  22. Aebi, H.E., Catalase, Methods Enzym. Anal., 1983, p. 673. https://doi.org/10.1016/b978-0-12-091302-2.50032-3

    Book  Google Scholar 

  23. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, p. 867. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  24. Polle, A., Otter, T., and Seifert, F., Apoplastic peroxidases and lignification in needles of norway spruce (Picea abies L.), Plant Physiol., 1994, vol. 106, p. 53. https://doi.org/10.1104/pp.106.1.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kovalikova, Z., Jiroutova, P., Toman, J., DobroVolna, D., and Drbohlavova, L., Physiological responses of apple and cherry in vitro culture under different levels of drought stress, Agronomy, 2020, vol. 10, p. 1689. https://doi.org/10.3390/agronomy10111689

    Article  CAS  Google Scholar 

  26. Rigling, A., Brühlhart, H., Bräker, O.U., Forster, T., and Schweingruber, F.H., Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the Central Alps, Switzerland, For. Ecol. Manage., 2003, vol. 175, p. 285. https://doi.org/10.1016/S0378-1127(02)00136-6

    Article  Google Scholar 

  27. Sinha, R., Zandalinas, S.I., Fichman, Y., Sen, S., Zen-g, S., Gómez-Cadenas, A., Joshi, T., Fritschi, F.B., and Mittler, R., Differential regulation of flower transpiration during abiotic stress in annual plants, New Phytol., 2022, vol. 235, p. 611. https://doi.org/10.1111/nph.18162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zokaee-Khosroshahi, M., Esna-Ashari, M., Ershadi, A., and Imani, A., Morphological changes in response to drought stress in cultivated and wild almond species, Int. J. Hortic. Sci. Technol., 2014, vol. 1, p. 79. https://doi.org/10.22059/ijhst.2014.50520

    Article  CAS  Google Scholar 

  29. Schlemmer, M.R., Francis, D.D., Shanahan, J.F., and Schepers, J.S., Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content, Agron. J., 2005, vol. 97, p. 106. https://doi.org/10.2134/agronj2005.0106

    Article  CAS  Google Scholar 

  30. Alkahtani, M.D.F., Hafez, Y.M., Attia, K., Rashwan, E., Husnain, L.Al, Algwaiz, H.I.M., and Abdelaal, K.A.A., Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet, Antioxidants, 2021, vol. 10, p. 1. https://doi.org/10.3390/antiox10030398

    Article  CAS  Google Scholar 

  31. Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F., and Wu, J., Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat, Water, 2020, vol. 12, p. 2127. https://doi.org/10.3390/W12082127

    Article  CAS  Google Scholar 

  32. Zhang, R.R., Wang, Y.H., Li, T., Tan, G.F., Tao, J.P., Su, X.J., Xu, Z.S., Tian, Y.S., and **ong, A.S., Effects of simulated drought stress on carotenoid contents and expression of related genes in carrot taproots, Protoplasma, 2021, vol. 258, p. 379. https://doi.org/10.1007/s00709-020-01570-5

    Article  CAS  PubMed  Google Scholar 

  33. Badr, A. and Brüggemann, W., Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content, Photosynthetica, 2020, vol. 58, p. 638. https://doi.org/10.32615/ps.2020.014

    Article  CAS  Google Scholar 

  34. Piper, F.I., Corcuera, L.J., Alberdi, M., and Lusk, C., Differential photosynthetic and survival responses to soil drought in two evergreen nothofagus species, Ann. For. Sci., 2007, vol. 64, p. 447. https://doi.org/10.1051/forest:2007022

    Article  CAS  Google Scholar 

  35. Jamalluddin, N., Massawe, F.J., Mayes, S., Ho, W.K., Singh, A., and Symonds, R.C., Physiological screening for drought tolerance traits in vegetable amaranth (Ama-ranthus tricolor) Germplasm, Agriculture, 2021, vol. 11, p. 994. https://doi.org/10.3390/agriculture11100994

    Article  CAS  Google Scholar 

  36. Mukhopadhyay, S., Dutta, R., and Dhara, A., Assessment of air pollution tolerance index of Murraya paniculata (L.) Jack in Kolkata Metro City, West Bengal, India, Urban Climate, 2021, vol. 39, p. 100977. https://doi.org/10.1016/j.uclim.2021.100977

    Article  Google Scholar 

  37. Arzani, K., Yadollahi, A., Ebadi, A., and Wirthensohn, M., The relationship between bitterness and drought resistance of almond (Prunus dulcis Mill.), Afr. J. Agric. Res., 2010, vol. 5, p. 861. https://doi.org/10.5897/AJAR.9000725

    Article  Google Scholar 

  38. Chaudhry, U.K., Gökçe, Z.N.Ö., and Gökçe, A.F., Drought and salt stress effects on biochemical changes and gene expression of photosystem II and catalase genes in selected onion cultivars, Biologia, 2021, vol. 76, p. 3107. https://doi.org/10.1007/s11756-021-00827-5

    Article  CAS  Google Scholar 

  39. Wang, W.B., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P., and Kwak, S.S., Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses, Plant Physiol. Biochem., 2009, vol. 47, p. 570. https://doi.org/10.1016/j.plaphy.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  40. Sadat-Hosseini, M., Naeimi, A., Boroomand, N., Aalifar, M., and Farajpour, M., Alleviating the adverse effects of salinity on roselle plants by green synthesized nanoparticles, Sci. Rep., 2022, vol. 12, p. 18165. https://doi.org/10.1038/s41598-022-22903-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Imani.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohari, S., Imani, A., Talaei, A.R. et al. Physiological Responses of Almond Genotypes to Drought Stress. Russ J Plant Physiol 70, 141 (2023). https://doi.org/10.1134/S1021443723601751

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723601751

Keywords:

Navigation