Log in

Appropriate Irrigation Regime and Sowing Date Boost Camelina Seed Yield and Oil Content by Improving Physiologic and Agronomic Traits

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A two-year experiment (2018–2020) was arranged as a factorial in a randomized complete block design with three replicates to study the response of camelina (Camelina sativa (L.) Crantz) to irrigation regimes at different sowing dates in Karaj, Iran. The experiment factors were four irrigation regimes including full irrigation and restricted irrigation starting either from silicle formation, or flowering and stage of maximum stem length, as well as three sowing dates including September 27 (27-Sep), October 12 (12-Oct) and 25 (25-Oct). Significant reductions were recorded in agronomic (numbers of silicle per plant and seed per silicle, and 1000-seed weight) and physiologic (RWC, relative water content) and chlorophyll content) traits when plants were subjected to drought stress. In contrast, the stomatal resistance (Rs), canopy temperature (CT), proline and carbohydrate contents increased under drought conditions compared with well-watered treatment. Delay in the sowing date led to reductions in numbers of silicle per plant and seed per silicle, 1000-seed weight, RWC, and chlorophyll content. The Rs, CT, proline and carbohydrate contents of plants sown on 12-Oct and 25-Oct had higher values than in 27-Sep. The highest oil contents were obtained from the full irrigation regime (31.02%), and 27-Sep sowing date (30.04%), and on each sowing date, the maximum seed yield belonged to the full irrigation regime. Overall, a significant reduction in water consumption can happen by delaying the sowing date to 12-Oct and restricting irrigation after silicle formation regarding the slight amount of seed yield depletion compared with the later sowing date and mild- and severe-stress irrigation regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. George, N., Thompson, S.E., Hollingsworth, J., Orloff, S., and Kaffka, S., Measurement and simulation of water-use by canola and camelina under cool-season conditions in California, Agric. Water Manage., 2018, vol. 196, p.15.

    Article  Google Scholar 

  2. Kim, R.J., Kim, H.U., and Suh, M.C., Development of camelina enhanced with drought stress resistance and seed oil production by co-overexpression of MYB96A and DGAT1C, Ind Crops Prod., 2019, vol. 138, p. 111475. https://doi.org/10.1016/j.indcrop.2019.111475

    Article  CAS  Google Scholar 

  3. Bakhshi, B. and Rostami Ahmadvandi Fanaei, H.R., Camelina, an adaptable oilseed crop for the warm and dried regions of Iran, Central Asian J. Plant Sci. Innov., 2021, vol. 1, p. 39.

    Google Scholar 

  4. Enjalbert, J.N., Zheng, S., Johnson, J.J., Mullen, J.L., Byrne, P.F., and McKay, J.K., Brassicaceae germplasm diversity for agronomic and seed quality traits under drought stress, Ind. Crops Prod., 2013, vol. 47, p. 176. https://doi.org/10.1016/j.indcrop.2013.02.037

    Article  CAS  Google Scholar 

  5. Siddique, K., Tennant, D., Perry, M., and Belford, R. Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-type environment, Aust. J. Agric. Res., 1990, vol. 41, p. 431. https://doi.org/10.1071/AR9900431

    Article  Google Scholar 

  6. Ahmed, Z., Anjum, S., Skalicky, M., Waraich, EA., et al., Selenium alleviates the adverse effect of drought in oilseed crops camelina (Camelina sativa L.) and canola (Brassica napus L.), Molecules, 2021, vol. 26, p. 1699. https://doi.org/10.3390/molecules26061699

    Article  CAS  Google Scholar 

  7. Eyni-Nargeseh, H., Shirani Rad, A.H., and Shiranirad, S., Does potassium silicate improve physiologic and agronomic traits and oil compositions of rapeseed genotypes under well-watered and water-limited conditions?, Gesunde Pflanzen., 2022, vol. 74, p. 801. https://doi.org/10.1007/s10343-022-00652-z

    Article  CAS  Google Scholar 

  8. Daryanto, S., Wang, L., and Jacinthe, P.A., Global synthesis of drought effects on maize and wheat production, Plos One, 2016, vol. 11, p. e0156362. https://doi.org/10.1371/journal.pone.0156362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmed, Z., Liu, J., Waraich, E.A., Yan, Y., et al., Differential physio-biochemical and yield responses of Camelina sativa L. under varying irrigation water regimes in semi-arid climatic conditions, Plos One, 2020, vol. 15, p. e0242441. https://doi.org/10.1371/journal.pone.0242441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shareef, M., Gui, D., Zeng, F., Waqas, M., Zhang, B., and Iqbal, H., Water productivity, growth, and physiologic assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China, Agric Water Manage., 2018, vol. 206, p.1. https://doi.org/10.1016/j.agwat.2018.04.042

    Article  Google Scholar 

  11. Zhu, J., Cai, D., Wang, J., Cao, J., Wen, Y., He, J., Zhao, L., Wang, D., and Zhang, S., Physiologic and anatomical changes in two rapeseed (Brassica napus L.) genotypes under drought stress conditions, Oil Crop Sci., 2021, vol. 6, p. 97.

    Article  Google Scholar 

  12. Fernanda, D.M., Chapman, SC., Rattey, A.R., Jodi, N., Song, Y.H., Christopher, J.T., and Matthew, R., Developmental and growth controls of tillering and water-soluble carbohydrate accumulation in contrasting wheat (Triticum aestivum L.) genotypes: can we dissect them?, J. Exp. Bot., 2013, vol. 64, p. 143. https://doi.org/10.1093/jxb/ers317

    Article  CAS  Google Scholar 

  13. Amiri, S.R., Deihimfard, R., and Eyni-Nargeseh, H., Toward dormant seeding of rainfed chickpea as an adaptation strategy to sustain productivity in response to changing climate, Field Crops Res., 2020, vol. 247, p. 107674. https://doi.org/10.1016/j.fcr.2019.107674

    Article  Google Scholar 

  14. Huang, B., Rachmilevitch, S., and Xu, J., Root carbon and protein metabolism associated with heat tolerance, J. Exp. Bot., 2012, vol. 63, p. 3455.

    Article  CAS  PubMed  Google Scholar 

  15. Fei, L., Chu, J., Zhang, X., Dong, S., Dai, X., and He, M., Physiologic and proteomic analyses indicate delayed sowing improves photosynthetic capacity in wheat flag leaves under heat stress, Front. Plant Sci., 2022, vol. 13, p. 848464. https://doi.org/10.3389/fpls.2022.848464

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bergkamp, B., Impa, S.M., Asebedo, A.R., Fritz, AK., and Jagadish, S.V.K., Prominent winter wheat varieties response to post-flowering heat stress under controlled chambers and field based heat tents, Field Crop Res., 2018, vol. 222, p. 143. https://doi.org/10.1016/j.fcr.2018.03.009

    Article  Google Scholar 

  17. Nazeri, P., Shirani Rad, A.H., Valad Abadi, S.A., Mirakhori, M., and Hadidi Masoule, E., Effect of sowing dates and late season water deficit stress on quantitative and qualitative traits of canola cultivars, Outlook Agr., 2018, vol. 47 (4), p. 291-297. https://doi.org/10.1177/0030727018793658

    Article  Google Scholar 

  18. Khayat, M., Rahnama, A., Lorzadeh, S., and Lack, S., Physiologic indices, phenological characteristics and trait evaluation of canola genotypes response to different planting dates, Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.,2016, vol. 88, p. 153–163. https://doi.org/10.1007/s40011-016-0733-z

    Article  CAS  Google Scholar 

  19. Shirani Rad, A.H., Ganj-Abadi, F., Jalili, E.O., Eyni-Nargeseh, H., and Safavi Fard, N., Zn foliar spray as a management strategy boosts oil qualitative and quantitative traits of spring rapeseed genotypes at winter sowing dates, J Soil Sci Plant Nutr., 2021, vol. 21(2), p. 1610–1620. https://doi.org/10.1007/s42729-021-00465-5

    Article  CAS  Google Scholar 

  20. Liu, K., Zhang, C., Guan, B., Yang, R., Liu, K., Wang, Z., Li, X., Xue, K., Yin, L., and Wang, X., The effect of different sowing dates on dry matter and nitrogen dynamics for winter wheat: an experimental simulation study, Peer J., 2021, vol. 9, p. 11700. https://doi.org/10.7717/peerj.11700

    Article  Google Scholar 

  21. Dhopte, A.M. and Manuel, L.M., Principles and Techniques for Plant Scientists, Odhpur, 2002.

    Google Scholar 

  22. Arnon, A.N., Method of extraction of chlorophyll in the plants, Agron. J., 1967, vol. 23, p. 112.

    Google Scholar 

  23. Bates, L.S., Waldern, R.P., and Teave, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  24. Dubois, D., Gilleres, KA., and Hamilton, JK., Colorimetric method for determination of sugars and related substances, Anal Chem., 1956, vol. 28, p. 350. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  25. Borzoo, S., Mohsenzadeh, S., Moradshahi, A., Kahrizi, D., Zamani, H., and Zarei, M., Characterization of physiologic responses and fatty acid compositions of Camelina sativa genotypes under water deficit stress and symbiosis with Micrococcus yunnanensis, Symbiosis, 2021, vol. 83, p. 79. https://doi.org/10.1007/s13199-020-00733-5

    Article  CAS  Google Scholar 

  26. Waraich, E.A., Ahmad, M., Soufan, W., Manzoor, M.T., Ahmad, Z., Habib-Ur-Rahman, M., and Sabagh, AE., Seed priming with sulfhydral thiourea enhances the performance of Camelina sativa L. under heat stress conditions, Agronomy, 2021, vol. 11, p. 1875. https://doi.org/10.3390/agronomy11091875

    Article  CAS  Google Scholar 

  27. Harrison, E.L., Arce Cubas, L., Gray, J.E., and Hepworth, C., The influence of stomatal morphology and distribution on photosynthetic gas exchange, Plant J., 2020, vol. 101, p. 768. https://doi.org/10.1111/tpj.14560

    Article  CAS  PubMed  Google Scholar 

  28. Kumar, A., Nayak, A.K., Das, BS., Panigrahi, N., Dasgupta, P., Mohanty, S., Kumar, U., Panneerselvam, P., and Pathak, H., Effects of water deficit stress on agronomic and physiologic responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2, Sci. Total Environ., 2019, vol. 650, p. 2032. https://doi.org/10.1016/j.scitotenv.2018.09.332

    Article  CAS  PubMed  Google Scholar 

  29. Patanè, C., Cosentino, S.L., Romano, D., and Toscano, S., Relative water content, proline, and antioxidant enzymes in leaves of long shelf-life tomatoes under drought stress and rewatering, Plants, 2022, vol. 11, p. 3045.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hu, L., **e, Y., Fan, S., Wang, Z., Wang, F., Zhang, B., Li, H., Song, J., and Kong, L., Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress, Plant Sci., 2018, vol. 272, p. 276.  https://doi.org/10.1016/j.plantsci.2018.03.036

    Article  CAS  PubMed  Google Scholar 

  31. Ferchichi, S., Hessini, K., Dell’Aversana, E., D’Amelia, L., Woodrow, P., Ciarmiello, L.F., Fuggi, A., and Carillo, P., Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites, Funct. Plant Biol., 2018, vol. 45, p. 1096. https://doi.org/10.1071/FP18046

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad, M., Waraich, E.A., Zulfiqar, U., Ullah, A., and Farooq, M., Thiourea application improves heat tolerance in camelina (Camelina sativa L. Crantz) by modulating gas exchange, antioxidant defense and osmoprotection, Ind Crops Prod., 2021, vol. 170, p. 113826. https://doi.org/10.1016/j.indcrop.2021.113826

    Article  CAS  Google Scholar 

  33. Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J.A., Hilal, M., and Prado, F.E., Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants, Plant Signal. Behav., 2009, vol. 4, p. 388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sevanto, S., Drought impacts on phloem transport, Curr. Opin. Plant Biol., 2018, vol. 43, p. 76.

    Article  PubMed  Google Scholar 

  35. Tanaka, A., Ito, H., Tanaka, R., Tanaka, N.K., Yoshida, K. and Okada, K., Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a, Proc. Natl. Acad. Sci., 1998. vol. 95, p. 12719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maina, J.N. and Wang, Q., Seasonal response of chlorophyll a/b ratio to stress in a typical desert species: Haloxylon ammodendron, Arid. Land Res. Manage., 2015, vol. 29, p. 321. https://doi.org/10.1080/15324982.2014.980588

    Article  CAS  Google Scholar 

  37. Siddiqui, M.H., Khan, M., Masroor, A., Khan, M.N., Mohammad, F., and Naeem, M., Hill reaction, photosynthesis and chlorophyll content in non-sugar-producing (Turnip, Brassica rapa L.) and sugar-producing (Sugar beet, Beta vulgaris L.) root crop plant, Turk. J. Biol., 2006, vol. 30, p. 153.

    CAS  Google Scholar 

  38. Wittenberg, A., Anderson, J.V., and Berti, MT., Crop growth and productivity of winter camelina in response to sowing date in the northwestern Corn Belt of the USA, Ind Crops Prod., 2020, vol. 158, p. 113036. https://doi.org/10.1016/j.indcrop.2020.113036

    Article  Google Scholar 

  39. Agarwal, A., Prakash,O., and Bala, M., Effect of irrigation schedule on growth and seed yield of camelina (Camelina sativa L.) in Tarai region of central Himalaya, Oil Crop Sci., 2021, vol. 6, p. 8.

    Article  Google Scholar 

  40. Padilla-Chacón, D., Martínez-Barajas, E., García-Esteva, A., Leal-Delgado, R., Kohashi-Shibata, J., and Peña-Valdivia, C.B., Biomass remobilization in two common bean (Phaseolus vulgaris L.) cultivars under water restriction, S. Afr. J. Bot., 2017, vol. 112, p. 79. https://doi.org/10.1016/j.sajb.2017.05.015

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support provided for this survey by the Seed and Plant Improvement Institute (SPII), Karaj, Iran.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Amir Hosein Shirani Rad: conceptualization, methodology, project administration. Mohammad Malmir: writing—original draft preparation, formal analysis, software. Hamed Eyni-Nargeseh: investigation, software, formal analysis, writing—original draft preparation.

Corresponding authors

Correspondence to A. H. Shirani Rad or H. Eyni-Nargeseh.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving people as objects of research.

CONFLICTS OF INTEREST

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Abbreviations: RWC—relative water content; CT—Canopy temperature; Rs—Stomatal resistance; BBCH—BiologischeBundesanstalt, Bundessortenamt and CHemical industry; RGR—relative growth rate; NAR—net assimilation rate; SAS—statistical analysis system; MSE—mean square error; GLM—general linear model; LSD—least significant difference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani Rad, A.H., Malmir, M. & Eyni-Nargeseh, H. Appropriate Irrigation Regime and Sowing Date Boost Camelina Seed Yield and Oil Content by Improving Physiologic and Agronomic Traits. Russ J Plant Physiol 70, 108 (2023). https://doi.org/10.1134/S1021443723600095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723600095

Keywords:

Navigation