Log in

Seed Germination and Seedling Establishment in Pistacia atlantica Desf. and Pistacia lentiscus L. under Drought

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The rehabilitation of degraded Mediterranean areas requires reintroduction of key-stone woody species. However, seed germination and seedling establishment for native species are poor. Germination behavior of Pistacia atlantica Desf. and Pistacia lentiscus L. in response to temperature (15, 20, 25 and 30°C), salinity (0, 10, 25 and 50 mM NaCl) and scarification (seeds with/without pulp) were analyzed. The response of seedling establishment to water deficit was related to soil moisture at 100 and 50% of the field capacity. Scarification facilitated germination while salinity should not exceed 50 mM NaCl and temperature must be between 20 and 25°C for P. lentiscus and 25°C for P. atlantica. In P. atlantica, seedling establishment was susceptible to water deficit and it showed high-water requirement. The survival of stressed P. atlantica seedlings are attributed to the reduction in stomatal conductance, carbon assimilation and shoot growth, and acceleration of old leaf senescence and root growth. The divergence within both species in seed germination, carbon assimilation, growth and biomass allocation are interpreted as a plasticity response, indicating a specialization to either original or resource habitats. For this reason, in reforestation programs, poor performance of planted seedlings is also associated with soil water deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chebouti-Meziou, N., Merabet, A., Chebouti, Y., Bissaad F.Z., Behidj-Ben Younes, N., and Doumandji, S., Effect of cold and scarification on seeds germination of Pistacia atlantica for rapid multination, Pak. J. Bot., 2014, vol. 46, p. 441.

    Google Scholar 

  2. Chaieb, M. and Boukhris, M., Flore succincte et illustrée des zones arides et sahariennes de Tunisie, Sfax: ATPNE, 1998, p. 290.

  3. Hojjat, F., Mozafari, V., Tajabadipour, A., and Hokmabadi, H., Effects of salinity and calcium on the growth and chemical composition of pistachio seedlings, J. Plant Nutr., 2014, p. 37.

  4. Ouni, S., Chelli, A., Noguera-Artiaga, L., and Hernandez, F., Effects of two rootstocks (Pistacia vera L. and Pistacia atlantica Dest.) on the yield, morphology, chemical composition of two Pistachio varieties (“Mateur” and “Achoury”), J. Microbiol. Biotech. Food. Sci., 2018, vol. 8, p. 853. https://doi.org/10.15414/jmbfs.2018.2.853-856

    Article  CAS  Google Scholar 

  5. Ak, B.E. and Parlakci, H., Pistacia lentiscus in the Mediterranean region in Turkey., Acta Hortic., 2009, vol. 818, p. 77. https://doi.org/10.17660/ActaHortic.2009.818.10

  6. Gijón, M.D.C., Gimenez, C., Perez-López, D., Guerrero, J., Couceiro, J.F., and Moriana, A., Rootstock influences the response of pistachio (Pistacia vera L. Cv. Kerman) to water stress and rehydration, Sci. Hortic., 2010, vol. 125, p. 666. https://doi.org/10.1016/j.scienta.2010.05.026

    Article  Google Scholar 

  7. García-Fayos, P. and Verdú, M., Soil seed bank factors controlling germination and establishment of a Mediterranean shrub: Pistacia lentiscus L., Acta Oecol., 1998, vol. 19, p. 357. https://doi.org/10.1016/S1146-609X(98)80040-4

    Article  Google Scholar 

  8. Mirzaie-Nodoushan, H. and Arefi, H.M., Variability in seed blankness in Pistacia atlantica Desf. in a natural habitat, Plant Genet. Resour., 2001, vol. 127, p. 46.

    Google Scholar 

  9. Lev, E. and Amar, Z., Ethnopharmacological surveys of traditional drugs sold in kingdom of Jordan, J. Ethnopharmacol, 2002, vol. 82, p. 131. https://doi.org/10.1016/S0378-8741(02)00182-4

    Article  PubMed  Google Scholar 

  10. Vasques, A.R., Pinto, G., Dias, M.C., Correia, C.M., Moutinho-Pereira, J.M., Vallejo, V.R., Santos, C., and Keizer, J.J, Physiological response to drought in seedlings of Pistacia lentiscus (mastic tree), New Forest., 2016, vol. 47, p. 119. https://doi.org/10.1007/s11056-015-9497-1

    Article  Google Scholar 

  11. Salmon, Y., Lintunen, A., Dayet, A., Chan, T., Dewar, R., Vesala, T., and Hölttä, T., Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees, New Phytol., 2020, vol. 226, p. 690. https://doi.org/10.1111/nph.16436

    Article  CAS  PubMed  Google Scholar 

  12. Barazani, O. and Golan-Goldhirsh, A., Salt driven interactions between Pistacia lentiscus and Salsola inermis, Environ. Sci. Pollut. Res. Int., 2009, vol. 16, p. 855. https://doi.org/10.1007/s11356-009-0231-4

    Article  CAS  PubMed  Google Scholar 

  13. Vasques, A., Vallejo, R., Santos, C., and Keizer, J., The role of cold storage and seed source in the germination of three Mediterranean shrub species with contrasting dormancy types, Ann. For Sci., 2014, vol. 71, p. 863. https://doi.org/10.1007/s13595-014-0395-z

    Article  Google Scholar 

  14. Bareke, T., Biology of seed development and germination physiology, Adv. Plants Agric. Res., 2018, vol. 8, p. 336. https://doi.org/10.15406/apar.2018.08.00335

    Article  Google Scholar 

  15. Dehnavi, A.R., Zahedi, M., Ludwiczak, A., Perez, S.C., and Piernik, A., Effect of salinity on seed germination and seedling development of Sorghum (Sorghum bicolor (L.) Moench) genotypes, Agronomy, 2020, vol. 10, p. 859. https://doi.org/10.3390/agronomy10060859

    Article  CAS  Google Scholar 

  16. Toscano, S., Ferrante, A., and Romano, D., Response of Mediterranean ornamental plants to drought stress, Horticulturae, 2019, vol. 5, p. 6. https://doi.org/10.3390/HORTICULTURAE5010006

    Article  Google Scholar 

  17. Flexas, J., Diaz-Espejo, A., Gago, J., Gallé, A., Galmés, J., Gulías, J., and Medrano, H., Photosynthetic limitations in Mediterranean plants: A review, Environ. Exp. Bot., 2014, vol. 103, p. 12. https://doi.org/10.1016/j.envexpbot.2013.09.002

    Article  CAS  Google Scholar 

  18. Mirzaei, J. and Karamshahi, A., Effects of drought stress on growth and physiological characteristics of Pistacia atlantica seedlings, Journal of Wood and Forest Science and Technology, 2015, vol. 22, p. 31.

    Google Scholar 

  19. Chai, Q., Gan, Y., Zhao, C., Xu, H.L., Waskom, R.M., Niu, Y., and Siddique, K.H.M., Regulated deficit irrigation for crop production under drought stress, Agron. Sustain., 2016, vol. 36, p. 3. https://doi.org/10.1007/s13593-015-0338-6

    Article  Google Scholar 

  20. Lefi, E., Medrano, H., and Cifre, J., Water uptake dynamics, photosynthesis and water use efficiency in field-grown Medicago arborea and Medicago citrinia under prolonged Mediterranean drought conditions, Ann. Appl. Biol., 2004, vol. 144, p. 299. https://doi.org/10.1111/j.1744-7348.2004.tb00345.x

    Article  Google Scholar 

  21. Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., and Fang, J., Drought effect on plant biomass allocation: A meta-analysis, Ecol. Evol., 2017, vol. 7, p. 11002. https://doi.org/10.1002/ece3.3630

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dichio, B., Romano, M., Nuzzo, V., and **loyanni, C., Soil water availability and relationship between canopy and roots in young olive trees (CV coratina), Acta Hortic., 2002, vol. 586, p. 255.

  23. Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., and Mei, L., Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves, Biology Open, 2018, vol. 7, p. bio035279. https://doi.org/10.1242/bio.035279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Poorter, H. and Jong, R.D., A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity, New Phytol., 1999, vol. 143, p. 163.

    Article  CAS  Google Scholar 

  25. Trubat, R., Cortina, J., and Vilagrosa, A., Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species, J. Arid Environ., 2008, vol. 72, p. 879.

    Article  Google Scholar 

  26. Tsakaldimi, M., Ganatsas, P., and Jacobs, D.F., Prediction of planted seedling survival of five Mediterranean species based on initial seedling morphology, New For., 2013, vol. 44, p. 327. https://doi.org/10.1007/s11056-012-9339-3

    Article  Google Scholar 

  27. Cortina, J., Green, J.J., Baddeley, J.A., and Watson, C.A., Root morphology and water transport of Pistacia lentiscus seedlings under contrasting water supply: A test of the pipe stem theory, Environ. Exp. Bot., 2008, vol. 62, p. 343. https://doi.org/10.1016/j.envexpbot.2007.10.007

    Article  Google Scholar 

  28. Zaafouri, M.S. and Chaieb, C., Arbres et arbustes de la Tunisie méridionale menacés de disparition, Acta Bot. Gall., 2013, vol. 146, p. 361. https://doi.org/10.1080/12538078.1999.10515823

    Article  Google Scholar 

  29. Tsakaldimi, M. and Ganatsas, P., Treatments improving seed germination of two Mediterranean sclerophyll species: Ceratonia siliqua and Pistacia lentiscus, in Proceedings of the 3rd Balcan Scientific Conference, 2001, vol. 2, p. 119.

  30. Kuru, C. and Aksu, O., Effect of gibberellin and other treatments on seed germination of Pistacia species, Acta Hortic., 1995, vol. 419, p. 125. https://doi.org/10.17660/ActaHortic.1995.419.19

  31. Verdú, M. and García-Fayos, P., The effect of deceptive fruits on predispersal seed predation by birds in Pistacia lentiscus, Plant Ecol., 2000, vol. 156, p. 245.

    Article  Google Scholar 

  32. Luna, B., Pérez, B., Torres, I., and Moreno, J.M., Effects of incubation temperature on seed germination of Mediterranean plants with different geographical distribution ranges, Folia Geobot., 2012, vol. 47, p. 17.

    Article  Google Scholar 

  33. Ungar, I.A., Halophyte seed germination, Bot. Rev., 1978, vol. 44, p. 233. https://doi.org/10.1007/BF02919080

    Article  CAS  Google Scholar 

  34. Zinelabidine, M.K., Belhadj, S., Achour, Z., and Louzabi, S., Influence du NaCl sur quelques paramètres morpho-physiologiques et biochimiques de jeunes plantules de deux espèces spontanées de Pistacia (P. lentiscus L. et P. atlantica Desf.), Agrobiologia, 2021, vol. 10, p. 2129.

    Google Scholar 

  35. Gúlias, J., Flexas, J., Abadía, A., and Madrano, H., Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species, Tree Physiol., 2002, vol. 22, p. 687. https://doi.org/10.1093/treephys/22.10.687

    Article  PubMed  Google Scholar 

  36. Ennajeh, M., Tounekti, T., Vadel, A.M., Khemira, H., and Cochard, H., Water relations and drought-induced embolism in two olive (Olea europaea L.) varieties ‘Meski’ and ‘Chemlali’ under severe drought conditions, Tree Physiol., 2008, vol. 28, p. 971.

    Article  PubMed  Google Scholar 

  37. Wilkinson, S. and Davis, W.J., ABA-based chemical signaling: The coordination of responses to stress on plants, Plant Cell. Environ., 2002, vol. 25, p. 195.

    Article  CAS  PubMed  Google Scholar 

  38. Bacelar, E.A., Moutinho-Pereira, J.M., Goncalves, B.C., Ferreira, H.F., and Correia, C.M., Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes, Environ. Exp. Bot., 2007, vol. 60, p. 183. https://doi.org/10.1016/j.envexpbot.2006.10.003

    Article  CAS  Google Scholar 

  39. Rouhi, V., Samson, R., Lemeur, R.R., and Van Damme, P., Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery, Environ. Exp. Bot., 2007, vol. 59, p. 117. https://doi.org/10.1016/j.envexpbot.2005.10.001

    Article  CAS  Google Scholar 

  40. Chaves, M.M., Maroco, J.P., and Pereira, J.S., Understanding plant responses to drought from genes to the whole plant, Funct. Plant Biol., 2003, vol. 30, p. 239. https://doi.org/10.1071/FP02076

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the technical staff of the Laboratory of Plant Physiology at the Faculty of Sciences of Gafsa (Tunisia) who carried out the experiments on the seeds.

Funding

This study was financially supported by the bilateral Tunisian-French project PHC-(12/G0910) managed by the CMCU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Badri.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: G—percentage of seed germination; D—dormant seeds; FC—field capacity; gs—stomatal conductance; A—net photosynthesis rate; E—rate of transpiration; A/E—ratio of photosynthesis and transpiration; RWC—relative water content; LA—leaf area; RL—root length; RM—roots mass; SM—shoots dry mass; SM/RM—ratio between shoots dry mass and roots mass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefi, E., Ben Hamed, S., Badri, M. et al. Seed Germination and Seedling Establishment in Pistacia atlantica Desf. and Pistacia lentiscus L. under Drought. Russ J Plant Physiol 70, 41 (2023). https://doi.org/10.1134/S1021443722602920

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722602920

Keywords:

Navigation