Log in

Key Genes and Molecular Mechanism Investigation in the Synthesis of Maize Quercetin Based on SNP and Bioinformatics Analysis

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This study aimed to reveal the potential genes and mechanisms involved in the biosynthesis of quercetin (QCT) in maize (Zea mays L.) through genome-wide association study (GWAS) and bioinformatics analysis, and provide a basis for further research on QCT. The content of QCT in 196 maize inbred lines was detected by LC-MS. The single-nucleotide polymorphism (SNPs) data from these samples were explored by Maize 55K SNP arrays, followed by population structure using fastStructure software and genome-wide association study (GWAS) analysis. Then, the SNP screening was performed with P < 1.00E-06 using Gramene software, followed by SNP annotation (150 KB up and downstream). The enrichment analysis was performed on all annotated genes. Finally, the protein-protein interaction (PPI) network analysis was performed to further reveal the relations among genes. A total of 12 SNPs were explored from original SNPs with P < 1.00E-06. The SNP annotation revealed several SNP-associated genes including Zm00001d036822 and Zm00001d007407. These genes were mainly enriched in metabolic pathway and functions like negative regulation of cell cycle phase transition. Finally, a PPI work was constructed by totally 34 annotated genes and 59 interactions. Zm00001d036822 and Zm00001d007407 might be novel candidate genes involved in the synthesis of QCT. Meanwhile, the metabolic pathway as well as negative regulation of cell cycle phase transition function might contribute to the biosynthesis of QCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Rocha, M.F.G., Sales, J.A., da Rocha, M.G., Galdino, L.M., de Aguiar, L., de Aquino Pereira-Neto, W., de Aguiar Cordeiro, R., de Souza Collares Maia Castelo-Branco, D., Sidrim, J.J.C., and Brilhante, R.S.N., Antifungal effects of the flavonoids kaempferol and quercetin: a possible alternative for the control of fungal biofilms, Biofouling, 2019, vol. 35, no. 3, p. 320.

    Article  CAS  Google Scholar 

  2. Grabber, J.H., Ress, D., and Ralph, J., Identifying new lignin bioengineering targets: impact of epicatechin, quercetin glycoside, and gallate derivatives on the lignification and fermentation of maize cell walls, J. Agric. Food Chem., 2012, vol. 60, p. 5152.

    Article  CAS  Google Scholar 

  3. Darband, S.G., Kaviani, M., Yousefi, B., Sadighparvar, S., Pakdel, F.G., Attari, J.A., Mohebbi, I., Naderi, S., and Majidinia, M., Quercetin: a functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer, J. Cell Physiol., 2018, vol. 233, p. 6544.

    Article  CAS  Google Scholar 

  4. Boots, A.W., Haenen, G.R., and Bast, A., Health effects of quercetin: from antioxidant to nutraceutical, Eur. J. Pharmacol., 2008, vol. 585, no. 2-3, p. 325.

    Article  CAS  Google Scholar 

  5. Wang, X., Wang, S., and Meng, X., A novel SNP-set analytical method without distinguishing common variants or rare variants in genome-wide association study, Int. J. Biomath., 2018, vol. 11, art. ID 1850094.

    Article  Google Scholar 

  6. Zhao, Z., Fu, Z., Lin, Y., Chen, H., **ng, X., Liu, Z., Li, W., and Tang, J., Genome-wide association analysis identifies loci governing mercury accumulation in maize, Sci. Rep., 2017, vol. 7, p. 1.

    Article  Google Scholar 

  7. Liu, N., Xue, Y., Guo, Z., Li, W., and Tang, J., Genome-wide association study identifies candidate genes for starch content regulation in maize kernels, Front. Plant Sci., 2016, vol. 7, p. 1046.

    PubMed  PubMed Central  Google Scholar 

  8. Wang, X., Wang, H., Liu, S., Ferjani, A., Li, J., Yan, J., Yang, X., and Qin, F., Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings, Nat. Genet., 2016, vol. 48, p. 1233.

    Article  CAS  Google Scholar 

  9. Žilić, S., Vančetović, J., Janković, M., and Maksimović, V., Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (Zea mays L.) pollen, J. Funct. Foods, 2014, vol. 10, p. 65.

    Article  Google Scholar 

  10. Unterseer, S., Bauer, E., Haberer, G., Seidel, M., Knaak, C., Ouzunova, M., Meitinger, T., Strom, T.M., Fries, R., Pausch, H., Bertani, C., Davassi, A., Mayer, K.F., and Schön, C.C., A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genoty** array, BMC Genomics, 2014, vol. 15, p. 823.

    Article  Google Scholar 

  11. Raj, A., Stephens, M., and Pritchard, J.K., fastSTRUCTURE: variational inference of population structure in large SNP data sets, Genetics, 2014, vol. 197, p. 573.

    Article  Google Scholar 

  12. Vidyashankar, S., Sandeep Varma, R., and Patki, P.S., Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells, Toxicol. In Vitro, 2013, vol. 27, p. 945.

    Article  CAS  Google Scholar 

  13. Liu, H. and Zhou, M., Antitumor effect of quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways, BMC Complementary Altern. Med., 2017, vol. 17, p. 531.

    Article  Google Scholar 

  14. Song, W., Zhao, X., Xu, J., and Zhang, H., Quercetin inhibits angiogenesis-mediated human retinoblastoma growth by targeting vascular endothelial growth factor receptor, Oncol. Lett., 2017, vol. 14, p. 3343.

    Article  Google Scholar 

  15. Murakami, Y., Katahira, M., Makino, R., Hayashi, K., Hirohashi, S., and Sekiya, T., Inactivation of the retinoblastoma gene in a human lung carcinoma cell line detected by single-strand conformation polymorphism analysis of the polymerase chain reaction product of cDNA, Oncogene, 1991, vol. 6, p. 37.

    CAS  PubMed  Google Scholar 

  16. Ach, R.A., Durfee, T., Miller, A.B., Taranto, P., Hanley-Bowdoin, L., Zambryski, P.C., and Gruissem, W., RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein, Mol. Cell. Biol., 1997, vol. 17, p. 5077.

    Article  CAS  Google Scholar 

  17. Jafari, S., Alizadeh, H., Davoodi, D., Jonoubi, P., Majd, A., Shobbar, Z.S., and Zamani, M., Changes in cytomorphology, expression of retinoblastoma related gene, and superoxide dismutase enzyme activity in maize cell culture exposed to silver nanoparticles, IEEE Trans. Nanobiosci., 2018, vol. 17, p. 380.

    Article  Google Scholar 

  18. Hogg, A., Onadim, Z., Baird, P.N., and Cowell, J.K., Detection of heterozygous mutations in the RB1 gene in retinoblastoma patients using single-strand conformation polymorphism analysis and polymerase chain reaction sequencing, Oncogene, 1992, vol. 7, p. 1445.

    CAS  PubMed  Google Scholar 

  19. Gordon-Kamm, W., Dilkes, B.P., Lowe, K., Hoerster, G., Sun, X., Ross, M., Church, L., Bunde, C., Farrell, J., Hill, P., Maddock, S., Snyder, J., Sykes, L., Li, Z., Woo, Y.M., et al., Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, p. 11975.

    Article  CAS  Google Scholar 

  20. Dubald, M., Barakate, A., Mandaron, P., and Mache, R., The ubiquitous presence of exopolygalacturonase in maize suggests a fundamental cellular function for this enzyme, Plant J., 1993, vol. 4, p. 781.

    Article  CAS  Google Scholar 

  21. Allen, R. and Lonsdale, D., Sequence analysis of three members of the maize polygalacturonase gene family expressed during pollen development, Plant Mol. Biol., 1992, vol. 20, p. 343.

    Article  CAS  Google Scholar 

  22. Barakate, A., Martin, W., Quigley, F., and Mache, R., Characterization of a multigene family encoding an exopolygalacturonase in maize, J. Mol. Biol., 1993, vol. 229, p. 797.

    Article  CAS  Google Scholar 

  23. Liang, L., Gao, C., Luo, M., Wang, W., Zhao, C., Zu, Y., Efferth, T., and Fu, Y., Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway, J. Agric. Food Chem., 2013, vol. 61, p. 2755.

    Article  CAS  Google Scholar 

  24. Granado-Serrano, A.B., Martín, M.A., Bravo, L., Goya, L., and Ramos, S., Quercetin modulates NF-κ B and AP-1/JNK pathways to induce cell death in human hepatoma cells, Nutr. Cancer, 2010, vol. 62, p. 390.

    Article  CAS  Google Scholar 

  25. Warburton, M.L., Womack, E.D., Tang, J.D., Thrash, A., Smith, J.S., Xu, W., Murray, S.C., and Williams, W.P., Genome-wide association and Metabolic pathway analysis of corn earworm resistance in maize, Plant Genome, 2018, vol. 11, p. 1.

    Article  Google Scholar 

  26. Zanganeh, R., Jamei, R., and Rahmani, F., Impacts of seed priming with salicylic acid and sodium hydrosulfide on possible metabolic pathway of two amino acids in maize plant under lead stress, Mol. Biol. Res. Commun., 2018, vol. 7, p. 83.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lam, T.K., Rotunno, M., Lubin, J.H., Wacholder, S., Consonni, D., Pesatori, A.C., Bertazzi, P.A., Chanock, S.J., Burdette, L., Goldstein, A.M., Tucker, M.A., Caporaso, N.E., Subar, A.F., and Landi, M.T., Dietary quercetin, quercetin-gene interaction, metabolic gene expression in lung tissue and lung cancer risk, Carcinogenesis, 2010, vol. 31, p. 634.

    Article  CAS  Google Scholar 

  28. Panchal, S.K., Poudyal, H., and Brown, L., Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats, J. Nutr., 2012, vol. 142, p. 1026.

    Article  CAS  Google Scholar 

  29. Yoshida, M., Yamamoto, M., and Nikaido, Y., Quercetin arrests human leukemic T-cells in late G1 phase of the cell cycle, Cancer Res., 1992, vol. 52, p. 6676.

    CAS  PubMed  Google Scholar 

  30. Chou, C.C., Yang, J.S., Lu, H.F., Ip, S.W., Lo, C., Wu, C.C., Lin, J.P., Tang, N.Y., Chung, J.G., Chou, M.J., Teng, Y.H., and Chen, D.R., Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells, Arch. Pharm. Res., 2010, vol. 33, p. 1181.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development Program of China (project no. 2016YFD0101002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W.-H. Li or L. Wang.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: GLM—general linear model; GO—Gene Ontology; GWAS—genome-wide association study; KEGG— Kyoto Encyclopedia of Genes and Genomes; PPI—protein-protein interaction; QCT—quercetin; SNP—single-nucleotide polymorphism.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WZ., Zhang, M., Huang, YM. et al. Key Genes and Molecular Mechanism Investigation in the Synthesis of Maize Quercetin Based on SNP and Bioinformatics Analysis. Russ J Plant Physiol 68, 421–429 (2021). https://doi.org/10.1134/S1021443721030110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721030110

Keywords:

Navigation