Log in

Dynamics of Phospholipid Content in the Vacuolar Membrane of Red Beet Taproots Exposed to Abiotic Stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The composition of vacuolar membrane phospholipids in the taproot of red beet (Beta vulgaris L.), cv. Modana, was determined at normal conditions and under different types of stress (hypo- and hyperosmotic and oxidative stress). The experiments have shown that, among vacuolar membrane phospholipids in red beet taproot, phosphatidylcholines and phosphatidylethanolamines dominated and accounted for 70% of total phospholipids. It is interesting that the content of phosphatidic acid was high (20% of total phospholipids of the vacuolar membrane). Stress effects brought about changes in the composition of membrane phospholipids, which may be an element of phenotypic adaptation. Under hypoosmotic stress, reliable changes in the content of phosphatidic acid were observed, hyperosmotic stress was associated with changes in the level of phosphatidylcholines and phosphatidylinositols, and oxidative stress was notable for changes in the content of phosphatidylethanolamines and phosphatidylserines. The most significant changes were observed in the classes of phospholipids that may be involved in structural modification of membranes associated with transformation of their bilayer lamellar structure into hexagonal. These phospholipids comprise phosphatidic acid, phosphatidylcholines, and phosphatidylethanolamines. Revealed changes in the content of these phospholipids may alter the ratio between lamellar bilayer and nonbilayer hexagonal lipid structures in the vacuolar membrane and act as an important adaptation mechanism ensuring protection against stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PA:

phosphatidic acid

PC:

phosphatidylcholines

PE:

phosphatidylethanolamines

PI:

phosphatidylinositols

PL:

phospholipids

PS:

phosphatidylserines

References

  1. Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.E., Rajashekar, C.B., Williams, T.D., and Wang, X., Profiling membrane lipids in plant stress responses, J. Biol. Chem., 2002, vol. 277, pp. 31994–32002.

    Article  PubMed  CAS  Google Scholar 

  2. Su, K., Bremer, D.J., Jeannotte, R., Welti, R., and Yang, C., Membrane lipid composition and heat tolerance in cool-season turgrasses, including a hybrid bluegrass, J. Am. Hortic. Sci., 2009, vol. 134, pp. 511–520.

    Google Scholar 

  3. Zhou, Y., Pan, X., Qu, H., and Underhill, S.J., Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development, J. Bioenerg. Biomembr., 2014, vol. 46, pp. 59–69.

    Article  PubMed  CAS  Google Scholar 

  4. Alvarez-Pizarro, J., Gomes-Filho, C., de Lacerda, C., Alencar, N., and Prisco, J., Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew (Anacardium occidentale L.) seedlings, Plant Growth Regul., 2009, vol. 59, pp. 125–135.

    Article  CAS  Google Scholar 

  5. Martinez-Ballesta, M. and Carvajal, M., Mutual interactions between aquaporins and membrane components, Front. Plant Sci., 2016, vol. 7: 1322. doi 10.3389/fpls.2016.01322

    Article  PubMed Central  Google Scholar 

  6. Uemura, M. and Steponkus, P.L., A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance, Plant Physiol., 1994, vol. 104, pp. 479–496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Narayanan, S., Tamura, P.J., Roth, M.R., Vara Prasad, P.V., and Welti, R., Wheat leaf lipid composition during heat stress. I. High day and night temperatures result in major lipid alterations, Plant Cell Environ., 2016, vol. 39, pp. 787–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhang, C., Hicks, G.R., and Raikhel, V., Molecular composition of plant vacuoles: important but less understood regulations and roles of tonoplast lipids, Plants, 2015, vol. 4, pp. 320–333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lin, Q., Wang, Y.M., Nose, A., Hong, H.T., and Agarie, S., Effects of high night temperature on lipid and protein compositions in tonoplasts isolated from Ananas comosus and Kalanchoe pinnata leaves, Biol. Plant., 2008, vol. 52, pp. 59–64.

    Article  CAS  Google Scholar 

  10. Zhou, Y., Pan, X., Qu, H., and Underhill, S.J., Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development, J. Membr. Biol., 2014, vol. 247, pp. 429–439.

    Article  PubMed  CAS  Google Scholar 

  11. Salyaev, R.K., Kuzevanov, V.Ya., Khaptagaev, S.B., and Kopytchuk, V.N., Isolation and purification of vacuoles and vacuolar membranes from plant cells, Sov. Plant Physiol., 1981, vol. 28, pp. 1295–1305.

    Google Scholar 

  12. Ozolina, N.V., Nesterkina, I.S., Kolesnikova, E.V., Salyaev, R.K., Nurminsky, V.N., Rakevich, A.L., Martynovich, E.F., and Chernyshov, M.Yu., Tonoplast of Beta vulgaris L. contains detergent-resistant membrane microdomains, Planta, 2013, vol. 237, pp. 859–871.

    Article  PubMed  CAS  Google Scholar 

  13. Bligh, E.G. and Dyer, W.J., A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917.

    Article  PubMed  CAS  Google Scholar 

  14. Vaskovsky, V.E., Kostetsky, E.Y., and Vasendin, J.M., A universal reagent for phospholipid analysis, J. Chromatogr., 1975, vol. 114, pp. 129–141.

    Article  PubMed  CAS  Google Scholar 

  15. Ozolina, N.V., Gurina, V.V., Nesterkina, I.S., Dudareva, L.V., Katyshev, A.I., and Nurminskii, V.N., Fatty acid composition of total lipids in vacuolar membrane under abiotic stress, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 2017, vol. 34, pp. 63–69.

    Google Scholar 

  16. Wu, J., Seliskar, D.M., and Gallagher, J.L., The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress, Am. J. Bot., 2005, vol. 92, pp. 852–858.

    Article  PubMed  CAS  Google Scholar 

  17. Campos, P.S., Quartin, V., Ramalho, J.C., and Nunes, M.A., Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants, J. Plant Physiol., 2003, vol. 160, pp. 283–292.

    Article  PubMed  CAS  Google Scholar 

  18. Bohn, M., Lüthje, S., Sperling, P., Heinz, E., and Dörffling, K., Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance, J. Plant Physiol., 2007, vol. 164, pp. 146–156.

    Article  PubMed  CAS  Google Scholar 

  19. Tavernier, E. and Pugin, A., Phospholipase activities associated with the tonoplast from Acer pseudoplatanus cells: identification of a phospholipase A1 activity, Biochem. Biophys. Acta, 1995, vol. 1233, pp. 118–122.

    Article  PubMed  Google Scholar 

  20. Behzadipour, M., Ratajczak, R., Faist, K., Pawlitschek, P., Trémolières, A., and Kluge, M., Phenotypic adaptation of tonoplast fluidity to growth temperature in the CAM plant Kalanchoe daigremontiana Ham. et Per. is accompanied by changes in the membrane phospholipid and protein composition, J. Membr. Biol., 1998, vol. 166, pp. 61–70.

    Article  PubMed  CAS  Google Scholar 

  21. Norberg, P. and Lijenberg, C., Lipids of membranes prepared from oat root cells, Plant Physiol., 1991, vol. 96, pp. 1136–1141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Su, K., Bremer, D.J., Jeannotte, R., Welti, R., and Yang, C., Membrane lipid composition and heat tolerance in cool-season turfgrasses, including a hybrid bluegrass, J. Am. Soc. Hortic. Sci., 2009, vol. 134, pp. 511–520.

    Google Scholar 

  23. Sankhagowit, S., Lee, E.Y., Wong, C.L., and Malmstadt, N., Oxidation of membrane curvature-regulating phosphatidylethanolamine lipid results in formation of bilayer and cubic structures, Langmuir, 2016, vol. 32, pp. 2450–2457.

    Article  PubMed  CAS  Google Scholar 

  24. Berglund, A.H., Quaetacci, M.F., Calucci, L., Navari-Izzo, F., Pinzino, C., and Liljenberg, C., Alterations of wheat root plasma lipid composition induced by copper stress result in changed physicochemical properties of plasma membrane lipid vesicles, Biochem. Biophys. Acta, 2002, vol. 1564, pp. 466–472.

    Article  PubMed  CAS  Google Scholar 

  25. Arisz, S.A., van Wijk, R., Roels, W., Zhu, J.K., Haring, M.A., and Munnik, T., Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase, Front. Plant Sci., 2013, vol. 4: 1. doi 10.3389/tpls.2013.00001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. McLeoughlin, F., Arzis, S.A., Dekker, H.L., Kramer, G., de Koster, C.G., Haring, M.A., Munnik, T., and Testerink, C., Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots, Biochem. J., 2013, vol. 450, pp. 573–581.

    Article  CAS  Google Scholar 

  27. Okazaki, Y. and Saito, K., Roles of lipids as signaling molecules and mitigators during stress response in plants, Plant J., 2014, vol. 79, pp. 584–596.

    Article  PubMed  CAS  Google Scholar 

  28. Almsherqi, Z.A., Kohlwein, S.D., and Deng, Y., Cubic membranes: a legend beyond the Flatland* of cell membrane organization, J. Cell Biol., 2006, vol. 173, pp. 839–844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. De Kruijff, B., Lipid polimorfism and biomembrane function, Curr. Opin. Chem. Biol., 1997, vol. 1, pp. 564–569.

    Article  PubMed  Google Scholar 

  30. Xue, H.W., Chen, X., and Me, Y., Function and regulation of phospholipid signaling in plants, Biochem. J., 2009, vol. 421, pp. 145–156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ozolina.

Additional information

Original Russian Text © N.V. Ozolina, V.V. Gurina, I.S. Nesterkina, V.N. Nurminskii, 2018, published in Fiziologiya Rastenii, 2018, Vol. 65, No. 5, pp. 358–365.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozolina, N.V., Gurina, V.V., Nesterkina, I.S. et al. Dynamics of Phospholipid Content in the Vacuolar Membrane of Red Beet Taproots Exposed to Abiotic Stress. Russ J Plant Physiol 65, 702–708 (2018). https://doi.org/10.1134/S1021443718040088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718040088

Keywords

Navigation