Log in

Influence of phytohormones on morphology and chlorophyll a fluorescence parameters in embryos of Fucus vesiculosus L. (Phaeophyceae)

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

While a variety of plant hormones from brown algae were described, there were few studies that examined the combined effects of these hormones on morphogenesis and photosynthetic physiology in develo** fucoid embryos. We evaluated the effects of phytohormones to determine the extent, to which responses were similar to those of terrestrial plants. Kinetin, IAA, ABA, GA3, and kinetin + IAA were added to seawater at a physiological concentration (1 mg/L), and embryos of Fucus vesiculosus L. were grown for 10 days. Photosynthetic activity of single embryos or embryo cells were characterized using the following fluorescence parameters: minimum fluorescence yield (F 0), maximum quantum yield (F v/F m), relative maximum rate of electron transfer to photosystem II under saturation irradiances (rETRmax), photosynthetic efficiency under non-saturating irradiances (αETR) and saturation irradiance (E k). In addition, embryo length and diameter and apical hair length and number were determined. Morphological changes associated with hormone treatments included an increase in the embryo length in the presence of IAA, an increase in the embryo diameter in the presence of IAA, kinetin, and kinetin + IAA, an increase in the maximum hair length and number in the presence of kinetin + IAA, and a decrease in the hair length and number in the presence of ABA. With respect to fluorescence parameters, significant effects of phytohormones included an increase in the F 0 and F v/F m at kinetin treatment, a synergistic effect of kinetin + IAA on F v/F m, rETRmax, and αETR, a promotion of F v/F m by GA, and a decrease of the parameters by ABA. These results are consistent with the data on responses of land plants to the same hormones and suggest that brown algae have evolved regulatory mechanisms for morphogenesis and photosynthetic regulation similar to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AF:

after fertilization

αETR:

photosynthetic efficiency under non-saturating irradiances

E k :

saturation irradiance

F 0 :

minimum fluorescence yield of PSII photochemistry

F v/F m :

maximum quantum yield of PSII photochemistry

PAM:

pulse amplitude modulation

PS:

photosystem

rETRmax :

relative maximum rate of electron transfer to PSII under saturation irradiances

References

  1. Weyers, J.D.B. and Paterson, N.W., Plant Hormones and the Control of Physiological Processes, New Phytol., 2001, vol. 152, pp. 375–407.

    Article  CAS  Google Scholar 

  2. Santner, A. and Estelle, M., Recent Advances and Emerging Trends in Plant Hormone Signaling, Nature, 2009, vol. 459, pp. 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  3. Kusnetsov, V.V., Herrmann, R.G., Kulaeva, O.N., and Oelmüller, R., Cytokinin Stimulates and Abscisic Acid Inhibits Greening of Etiolated Lupinus luteus Cotyledons by Affecting the Expression of the Light-Sensitive Protochlorophyllide Oxidoreductase, Mol. Gen. Genet., 1998, vol. 259, pp. 21–28.

    PubMed  CAS  Google Scholar 

  4. Nakano, T., Kimura, T., Kaneko, I., Nagata, N., Matsuyama, T., Asami, T., and Yoshida, S., Molecular Mechanism of Chloroplast Development Regulated by Plant Hormones, RIKEN Rev., 2001, vol. 41, pp. 86–87.

    Google Scholar 

  5. Staneloni, R.J., Rodriguez-Batiller, M.J., and Casal, J.J., Abscisic Acid, High-Light, and Oxidative Stress Down-Regulate a Photosynthetic Gene via a Promoter Motif Not Involved in Phytochrome-Mediated Transcriptional Regulation, Mol. Plant, 2008, vol. 1, pp. 75–83.

    Article  PubMed  CAS  Google Scholar 

  6. Tarakhovskaya, E.R., Maslov, Yu.I., and Shishova, M.F., Phytohormones in Algae, Russ. J. Plant Physiol., 2007, vol. 54, pp. 163–170.

    Article  CAS  Google Scholar 

  7. Stirk, W.A., Novak, O., Strnad, M., and van Staden, J., Cytokinins in Macroalgae, Plant Growth Regul., 2003, vol. 41, pp. 13–24.

    Article  CAS  Google Scholar 

  8. Polevoi, V.V., Tarakhovskaya, E.R., Maslov, Yu.I., and Polevoi, A.V., Role of Auxin in Induction of Polarity in Fucus vesiculosus Zygotes, Russ. J. Dev. Biol., 2003, vol. 34, pp. 360–365.

    Article  CAS  Google Scholar 

  9. Sun, H., Basu, S., Brady, S.R., Luciano, R.L., and Muday, G.K., Interactions between Auxin Transport and the Actin Cytoskeleton in Developmental Polarity of Fucus distichus Embryos in Response to Light and Gravity, Plant Physiol., 2004, vol. 135, pp. 266–278.

    Article  PubMed  CAS  Google Scholar 

  10. McLachlan, J. and Bidwell, R.G.S., Photosynthesis of Eggs, Sperm, Zygotes, and Embryos of Fucus serratus, Can. J. Bot., 1978, vol. 56, pp. 371–373.

    Article  CAS  Google Scholar 

  11. Kim, K.Y., Jeong, H.J., Main, H.P., and Garbary, D.J., Fluorescence and Photosynthetic Competency in Single Eggs and Embryos of Ascophyllum nodosum (Phaeophyceae), Phycologia, 2006, vol. 45, pp. 331–336.

    Article  Google Scholar 

  12. Quatrano, R.S., Developmental Biology: Development in Marine Organisms, Experimental Marine Biology, Mariscal, R.N., New York: Academic, 1974, pp. 303–346.

    Google Scholar 

  13. Kim, K.Y., O’Leary, S.J., and Garbary, D.J., Artificial Hybridization between Ascophyllum nodosum and Fucus vesiculosus (Phaeophyceae) from Nova Scotia, Can. J. Bot., 1997, vol. 75, pp. 1133–1136.

    Article  Google Scholar 

  14. Schreiber, U., Bilger, W., and Neubauer, C., Chlorophyll Fluorescence as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis Ecophysiology of Photosynthesis, Schulze, E.D. and Caldwell, M.M, Eds., Berlin: Springer-Verlag, 1994, pp. 49–70.

    Google Scholar 

  15. Rohaek, K., Chlorophyll Fluorescence Parameters: The Definitions, Photosynthetic Meaning, and Mutual Relationships, Photosynthetica, 2002, vol. 40, pp. 13–29.

    Article  Google Scholar 

  16. Kim, K.Y. and Garbary, D.J., Fluorescence Responses of Photosynthesis to Extremes of Hyposalinity, Freezing and Desiccation in the Intertidal Crust Hildenbrandia rubra (Hildenbrandiales, Rhodophyta), Phycologia, 2006, vol. 45, pp. 680–686.

    Article  Google Scholar 

  17. Major, K.M. and Davison, I.R., Influence of Temperature and Light on Growth and Photosynthetic Physiology of Fucus evanescens (Phaeophyta) Embryos, Eur. J. Phycol., 1998, vol. 33, pp. 129–138.

    Article  Google Scholar 

  18. Kim, K.Y. and Garbary, D.J., Form, Function and Longevity in Fucoid Thalli: Chlorophyll Fluorescence Differentiation of Ascophyllum nodosum, Fucus vesicu- losus and F. distichus (Phaeophyceae), Algae, 2009, vol. 24, pp. 393–404.

    Google Scholar 

  19. Garbary, D.J. and Kim, K.Y., Anatomical Differentiation and Photosynthetic Adaptation in Brown Algae, Algae, 2005, vol. 20, pp. 233–238.

    Article  Google Scholar 

  20. Serodio, J., Coelho, H., Vieira, S., and Cruz, S., Microphytobenthos Vertical Migratory Photoresponse as Characterized by Light-Response Curves of Surface Biomass, Estuarine, Coastal, Shelf Sci., 2006, vol. 68, pp. 547–556.

    Article  Google Scholar 

  21. Genty, B., Briantais, J.M., and Baker, N.R., The Relationship between the Quantum Yield of Photosynthesis Electron Transport and Quenching of Chlorophyll Fluorescence, Biochim. Biophys. Acta, 1989, vol. 990, pp. 87–92.

    Article  CAS  Google Scholar 

  22. Tarakhovskaya, E.R., and Maslov, Y.I., Description of the Photosynthetic Apparatus of Fucus vesiculosus L. in Early Embryogenesis, Biol. Bull. Russ. Acad. Sci., 2005, vol. 32, pp. 456–460.

    Article  CAS  Google Scholar 

  23. Brawley, S.H., Quatrano, R., and Wetherbee, R., Fine-Structural Studies of the Gametes and Embryo of Fucus vesiculosus L. (Phaeophyta): 3. Cytokinesis and the Multicellular Embryo, J. Cell Sci., 1977, vol. 24, pp. 275–294.

    PubMed  CAS  Google Scholar 

  24. Kasten, B., Buck, F., Nuske, J., and Reski, R., Cytokinin Affects Nuclear- and Plastome-Encoded Energy-Converting Plastid Enzymes, Planta, 1997, vol. 201, pp. 261–272.

    Article  PubMed  CAS  Google Scholar 

  25. Kimura, T., Nakano, T., Taki, N., Ishikawa, M., Asami, T., and Yoshida, S., Cytokinin-Induced Gene Expression in Cultured Green Cells of Nicotiana tabacum Identified by Fluorescent Differential Display, BoiSci. Biotechnol. Biochem., 2001, vol. 65, pp. 1275–1283.

    Article  CAS  Google Scholar 

  26. Hunt, R.W., Chinnasamy, S., and Das, K.C., The Effect of Naphthalene-Acetic Acid on Biomass Productivity and Chlorophyll Content of Green Algae, Coccolithophore, Diatom, and Cyanobacterium Cultures, Appl. Biochem. Biotechnol., 2011, vol. 164, pp. 1350–1365.

    Article  PubMed  CAS  Google Scholar 

  27. Moller, S.G. and Chua, N.-H., Interactions and Intersections of Plant Signaling Pathways, J. Mol. Biol., 1999, vol. 293, pp. 219–234.

    Article  PubMed  CAS  Google Scholar 

  28. Del Pozo, J.C., Lopez-Matas, M.A., Ramirez-Parra, E., and Gutierrez, C., Hormonal Control of the Plant Cell Cycle, Physiol. Plant., 2005, vol. 123, pp. 173–183.

    Article  Google Scholar 

  29. Bartholomew, D.M., Bartley, G.E., and Scolnik, P.A., Abscisic Acid Control of rbcS and cab Transcription in Tomato Leaves, Plant Physiol., 1991, vol. 96, pp. 291–296.

    Article  PubMed  CAS  Google Scholar 

  30. Biemelt, S., Tschiersch, H., and Sonnewald, U., Impact of Altered Gibberellin Metabolism on Biomass Accumulation, Lignin Biosynthesis, and Photosynthesis in Transgenic Tobacco Plants, Plant Physiol., 2004, vol. 135, pp. 254–265.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Tarakhovskaya.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarakhovskaya, E.R., Kang, E.J., Kim, K.Y. et al. Influence of phytohormones on morphology and chlorophyll a fluorescence parameters in embryos of Fucus vesiculosus L. (Phaeophyceae). Russ J Plant Physiol 60, 176–183 (2013). https://doi.org/10.1134/S1021443713020192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713020192

Keywords

Navigation