Log in

Preparation and Characterization of PLLA-Based Microporous Membranes with High CO2/O2 Selective Permeability for Food Packaging

  • POLYMER MEMBRANES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

To maintain CO2/O2 permselectivity of poly(lactic acid) (PLLA) microporous films for better preservation of fresh produce, Polytrifluoropropylmethylsiloxane (PTFPMS) was introduced into PLLA to prepare PLLA-PTFPMS-PLLA (PLTL) block copolymer. And PLTL-n% microporous films were prepared using varying ratios of chloroform/acetone blended solvents as the film-casting solution in this study. PTFPMS filled a portion of the micropores of the PLTL-n% film. While the micropores enhanced the O2 and CO2 dioxide permeability of the PLLA microporous film, PTFPMS maintained the CO2/O2 selective permeability of the film. In comparison to PLLA films, the CO2 permeability of mixed solvents-treated PLTL-20% film increased from 1.99 × 10–8 to 10.08 × 10–8 cm3 m/m2 h Pa, O2 permeability increased from 0.70 × 10–8 to 2.02 × 10–8 cm3 m/m2 h Pa, and CO2/O2 permselectivity increased from 2.9 to 5.0 at 5°C. In addition, PLTL-n% microporous films also have good flexibility and UV shielding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. J. Aschemann-Witzel, Science 352, 408 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Food Waste Footprint: Impact on Natural Resources. Summary Report (Food and Agriculture Organization of the United Nations, 2013).

  3. Z. Zhou, J. Ma, K. Li, W. Zhang, K. Li, X. Tu, L. Liu, J. Xu, and H. Zhang, ACS Nano 15, 8742 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Y. Fang and M. Wakisaka, Agriculture 11, 992 (2021).

    Article  CAS  Google Scholar 

  5. J. E. Hyun, and S. Y. Lee, J. Food Saf. 38, e12376 (2018).

  6. M. Singh, A. Kumar, and P. Kaur, J. Food Sci. Technol. 51, 1911 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. E. Paulsen, S. Barrios, and P. Lema, Food Packag Shelf Life 22, 100407 (2019).

  8. W. Wei, P. Lv, Q. **a, F. Tan, F. Sun, W. Yu, L. Jia, and J. Cheng, Postharvest. Biol. Technol. 132, 62 (2017).

    Article  CAS  Google Scholar 

  9. C. Costa, A. Lucera, A. Conte, M. Mastromatteo, B. Speranza, A. Antonacci, and M. A. Del Nobile, J. Food Eng. 102, 115 (2011).

    Article  Google Scholar 

  10. M. Asgher, S. A. Qamar, M. Bilal, and H. M. Iqbal, Food Res. Int. 137, 109625 (2020).

  11. J. W. Rhim, H. M. Park, and C. S. Ha, Prog. Polym. Sci. 38, 1629 (2013).

    Article  CAS  Google Scholar 

  12. S. Marano, E. Laudadio, C. Minnelli, and P. Stipa, Polymers 14, 1626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Hu, T. Dong, H. Bu, T. Sun, J. Zhang, C. Xu, and X. Yun, Int. J. Biol. Macromol. 219, 519 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. W. Hu, F. Gong, Q. Dong, Y. Kang, Y. Zhou, B. Liu, and L. Li, J. Food Sci. 88, 2496 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Wu, K. **ao, and Q. Luo, Food Pack. Shelf Life 37, 101063 (2023).

  16. K. Georgios, H. Janice, and A. Eva, J. Sci. Food Agric. 95, 972 (2015).

    Article  Google Scholar 

  17. W. Liu, N. Huang, J. Yang, L. Peng, J. Li, and W. Chen, Food Chem. 373, 131525 (2022).

  18. C. Winotapun, Y. Issaraseree, P. Sirirutbunkajal, and P. Leelaphiwat, J. Food Eng. 341, 111356 (2023).

  19. Y. Zheng, Y. Hu, X. Yang, M. Yuan, J. Zhang, Y. Zhang, and J. Luo, J. Appl. Polym. Sci. 136, 47723 (2019).

    Article  Google Scholar 

  20. X. Yun, X. Li, P. Pan, and T. Dong, RSC Adv. 9, 12354 (2019).

    Article  CAS  Google Scholar 

  21. Y. Song, E. L. Lugo, S. Powell, P. Tzeng, B. A. Wilhite, and J. C. Grunlan, J. Polym. Sci., Part B: Polym. Phys. 55, 1730 (2017).

    Article  CAS  Google Scholar 

  22. E. Shi, W. Huang, Z. **ao, D. Li, and M. Tang, J. Appl. Polym. Sci. 104, 2468 (2007).

    Article  CAS  Google Scholar 

  23. E. A. Grushevenko, I. L. Borisov, and A. V. Volkov, Petrol Chem. 61, 959 (2021).

    Article  CAS  Google Scholar 

  24. G. Li, W. Kujawski, K. Knozowska, and J. Kujawa, Membranes 11, 56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. R. Fried and N. Hu, Polymer 44, 4363 (2003).

    Article  CAS  Google Scholar 

  26. V. M. Shah, B. J. Hardy, and S. A. Stern, J. Polym. Sci., Part B: Polym. Phys. 24, 2033 (1986).

    Article  CAS  Google Scholar 

  27. B. J. Park, N. U. Kim, C. S. Lee, and J. H. Kim, Polymers 13, 177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. E. Rezabeigi, P. M. Wood-Adams, and R. A. L. Drew, Polymer 55, 6743 (2014).

    Article  CAS  Google Scholar 

  29. N. P. Panapitiya, S. N. Wijenayake, D. D. Nguyen, Y. Huang, I. H. Musselman, K. J. Balkus, Jr., and J. P. Ferraris, ACS Appl. Mater. Interfaces 7, 18618 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. T. Furukawa, H. Sato, R. Murakami, J. Zhang, Y. X. Duan, I. Noda, and Y. Ozaki, Macromolecules 38, 6445 (2005).

    Article  CAS  Google Scholar 

  31. W. M. Chiu, Y. A. Chang, H. Y. Kuo, M. H. Lin, and H. C. Wen, J. Appl. Polym. Sci. 108, 3024 (2008).

    Article  CAS  Google Scholar 

  32. J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki, Macromolecules 38, 8012 (2005).

    Article  CAS  Google Scholar 

  33. M. L. Di Lorenzo, M. Cocca, and M. Malinconico, Thermochim. Acta 522, 110 (2011).

    Article  CAS  Google Scholar 

  34. E. J. Dil, P. J. Carreau, and B. D. Favis, Polymer 68, 202 (2015).

    Article  CAS  Google Scholar 

  35. X. Yun, X. Li, Y. **, W. Sun, and T. Dong, Polym. Sci., Ser. A 60, 141 (2018).

    Article  CAS  Google Scholar 

  36. X. Yun, Y. Wang, M. Li, Y. **, Y. Han, and T. Dong, J. Food Proces. Preserv. 41, e13247 (2017).

  37. Y. Yang, Z. Si, D. Cai, X. Teng, G. Li, Z. Wang, S. Li, and P. Qin, Sep. Purif. Technol. 235, 116144 (2020).

  38. P. Putnik, D. B. Kovačević, K. Herceg, S. Roohinejad, R. Greiner, A. E.-D. A. Bekhit, and B. Levaj, Food Control 81, 55 (2017).

    Article  CAS  Google Scholar 

  39. B. Rukmanikrishnan, S. K. Rajasekharan, J. Lee, S. Ramalingam, and J. Lee, Mater. Today Commun. 24, 101346 (2020).

Download references

Funding

This work was financially supported by Youth Fund of the National Natural Science Fund Project (21805142); Excellent Youth Training program of College of Food Science and Engineering (SPYQ202101); Young innovative talent of grassland talent project of Inner Mongolia (2020) and Talent Development Fund of Inner Mongolia Autonomous Region (2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyan Yun.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yang, Y., Dong, T. et al. Preparation and Characterization of PLLA-Based Microporous Membranes with High CO2/O2 Selective Permeability for Food Packaging. Polym. Sci. Ser. A (2024). https://doi.org/10.1134/S0965545X23600424

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0965545X23600424

Navigation