Log in

CoMo Sulfide Catalysts Supported on Natural Halloysite Nanotubes: Dealumination as an Effective Approach to Improve Catalytic Performance

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

–CoMo sulfide catalysts supported on aluminosilicate halloysite nanotubes (CoMoS/HNT) and on dealuminated halloysite nanotubes (CoMoS/HNT(deAl)) were synthesized by incipient wetness impregnation using pseudoboehmite as a binder. Both the supports and related catalysts were characterized by low-temperature nitrogen adsorption, energy dispersive X-ray fluorescence analysis, temperature-programmed reduction by hydrogen, FTIR spectroscopy of adsorbed pyridine, transmission electron microscopy, and X-ray photoelectron spectroscopy. The catalyst samples were further tested in hydrotreating of diesel feedstocks. Dealumination of halloysite was found to increase the area of Si-enriched surface segments, thus weakening interaction between the sulfide phase and the support and, hence, increasing the content of highly active sulfide particles. In the case of a mixed feedstock, CoMoS/HNT(deAl) + Al2O3 achieved a reaction rate constant of 0.605 ppm S–0.4/g(L–0.4 h) compared to 0.429 ppm S–0.4/g(L–0.4 h) for an alumina-supported sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Stanislaus, A., Marafi, A., and Rana, M.S., Catal Today, 2010, vol. 153, nos. 1–2, pp. 1–68. https://doi.org/10.1016/j.cattod.2010.05.011

    Article  CAS  Google Scholar 

  2. Díaz de León, J.N., Ramesh Kumar, C., AntúnezGarcía, J., and Fuentes-Moyado, S., Catalysts, 2019, vol. 9, no. 1, pp. 87. https://doi.org/10.3390/catal9010087

    Article  CAS  Google Scholar 

  3. Naranov, E., Sadovnikov, A., Arapova, O., Kuchinskaya, T., Usoltsev, O., Bugaev, A., Janssens, K., Vos, D.D., and Maximov, A., Appl. Catal. B: Environ., 2023, vol. 334, Article ID 122861. https://doi.org/10.1016/j.apcatb.2023.122861

  4. Naranov, E., ChemCatChem., 2024, vol. 16, no. 9, Article ID e202301268. https://doi.org/10.1002/cctc.202301268

  5. Kokayeff, P., Zink, S., and Roxas, P., Catalysts, 2020, vol. 10, no. 6, p. 594. https://doi.org/10.3390/catal10060594

    Article  CAS  Google Scholar 

  6. Pimerzin, A., Savinov, A., Vutolkina, A., Makova, A., Glotov, A., Vinokurov, V., and Pimerzin, A., Catalysts, 2020, vol. 10, no. 6, p. 594. https://doi.org/10.3390/catal10060594

  7. Vinogradov, N.A., Glotov, A.P., Savinov, A.A., Vutolkina, A.V., Vinokurov, V.A., and Pimerzin, A.A., J. Porous Mater., 2021, vol. 28, no. 5, pp. 1449–1458. https://doi.org/10.1007/s10934-021-01097-x

    Article  CAS  Google Scholar 

  8. Vutolkina, A.V., Makhmutov, D.F., Zanina, A.V., Maximov, A.L., Glotov, A.P., Sinikova, N.A., and Karakhanov, E.A., Petrol. Chem., 2018, vol. 58, pp. 528–534. https://doi.org/10.1134/S0965544118070095

    Article  CAS  Google Scholar 

  9. Vutolkina, A., Glotov, A., Baygildin, I., Akopyan, A., Talanova, M., Terenina, M., Maximov, A., and Karakhanov, E., Pure Appl. Chem., 2020, vol. 92, no. 6, pp. 949–966. https://doi.org/10.1515/pac-2019-1115

    Article  CAS  Google Scholar 

  10. Bello, S.S., Wang, C., Zhang, M., Gao, H., Han, Z., Shi, L., Su, F., and Xu, G., Energy Fuel., 2021, vol. 35, no. 14, pp. 10998–11016. https://doi.org/10.1021/acs.energyfuels.1c01015

    Article  CAS  Google Scholar 

  11. Ninh, T.K.T., Laurenti, D., Leclerc, E., and Vrinat, M., Appl. Catal. A: Gen., 2014, vol. 487, pp. 210–218. https://doi.org/10.1016/j.apcata.2014.07.042

    Article  CAS  Google Scholar 

  12. Oliviero, L., Maugé, F., Afanasiev, P., Pedraza-Parra, C., and Geantet, C., Catal. Today, 2020, vol. 377, pp. 3–16. https://doi.org/10.1016/j.cattod.2020.09.008

    Article  CAS  Google Scholar 

  13. Nikulshina, M., Kokliukhin, A., Mozhaev, A., and Nikulshin, P., Catal. Commun., 2019, vol. 127, pp. 51–57. https://doi.org/10.1016/j.catcom.2019.05.003

    Article  CAS  Google Scholar 

  14. Liu, J.X., Liu, X.Q., Yan, R.X., Jia, L.F., Cheng, H.F., Liu, H., and Zhu, W.S., Petrol. Sci., 2022, vol. 20, no. 2, pp. 1231–1237. https://doi.org/10.1016/j.petsci.2022.09.023

    Article  CAS  Google Scholar 

  15. Ferdous, D., Dalai, A.K., and Adjaye, J., Can. J. Chem. Eng., 2005, vol. 83, no. 5, pp. 855–864. https://doi.org/10.1002/cjce.5450830507

    Article  CAS  Google Scholar 

  16. Suresh, C., Pérez-Cabrera, L., de León, J.D., Zepeda, T.A., Alonso-Núñez, G., and Moyado, S.F., Catal Today, 2017, vol. 296, pp. 214–218. https://doi.org/10.1016/j.cattod.2017.04.048

    Article  CAS  Google Scholar 

  17. Naranov, E.R., Sadovnikov, A.A., Arapova, O.V., Bugaev, A.L., Usoltsev, O.A., Gorbunov, D.N., Russo, V., Murzin, D.Y., and Maximov, A.L., Catal. Sci. Technol., 2023, vol. 13, no. 5, pp. 1571–1583. https://doi.org/10.1039/D2CY01127A

    Article  CAS  Google Scholar 

  18. Glotov, A.P., Vutolkina, A.V., Vinogradov, N.A., Pimerzin, A.A., Vinokurov, V.A., and Pimerzin, A.A., Catal. Today, 2021, vol. 377, pp. 82–91. https://doi.org/10.1016/j.cattod.2020.10.010

    Article  CAS  Google Scholar 

  19. Demikhova, N.R., Poplavskii, A.V., Reshetina, M.V., Boev, S.S., Pimerzina, A.O., Vutolkina, A.V., and Glotov, A.P., Chem. Technol. Fuel. Oil., 2021, vol. 57, no. 2, pp. 250–258. https://doi.org/10.1007/s10553-021-01245-8

    Article  CAS  Google Scholar 

  20. Glotov, A., Vutolkina, A., Pimerzin, A., Vinokurov, V., and Lvov, Y., Chem. Soc. Rev., 2021, vol. 50, no. 16, pp. 9240–9277. https://doi.org/10.1039/D1CS00502B

    Article  CAS  PubMed  Google Scholar 

  21. Papoulis, D., Appl. Clay Sci., 2019, vol. 168, pp. 164–174. https://doi.org/10.1016/j.clay.2018.11.009

    Article  CAS  Google Scholar 

  22. Zasypalov, G., Vutolkina, A., Klimovsky, V., Abramov, E., Vinokurov, V., and Glotov, A., Appl. Catal. B: Environ., 2024, vol. 342, Article ID 123425. https://doi.org/10.1016/j.apcatb.2023.123425

  23. Stavitskaya, A., Rubtsova, M., Glotov, A., Vinokurov, V., Vutolkina, A., Fakhrullin, R., and Lvov, Y., Nanoscale Adv., 2022, vol. 4, no. 13, pp. 2823–2835. https://doi.org/10.1039/D2NA00163B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferrante, F., Bertini, M., Ferlito, C., Lisuzzo, L., Lazzara, G., and Duca, D., Appl. Clay Sci., 2023, vol. 232, Article ID 106813. https://doi.org/10.1016/j.clay.2022.106813

  25. Pimerzin, Al.A., Vutolkina, A.V., Vinogradov N.A, Vinokurov, V.A., Lvov, Yu.M., and Glotov, A.P., Catal. Today, 2022, vol. 397, pp. 121–128. https://doi.org/10.1016/j.cattod.2021.11.019

    Article  CAS  Google Scholar 

  26. Gandubert, A.D., Legens, C., Guillaume, D., Rebours, S., and Payen, E., Oil Gas Sci. Technol., 2007, vol. 62, no. 1, pp. 79–89. https://doi.org/10.2516/ogst:2007007

    Article  CAS  Google Scholar 

  27. Qiu, L. and Xu, G., Appl. Surf. Sci., 2010, vol. 256, no. 11, pp. 3413–3417. https://doi.org/10.1016/j.apsusc.2009.12.043

    Article  CAS  Google Scholar 

  28. Ancheyta, J., Angeles, M.J., Macías, M.J., Marroquin, G., and Morales, R., Energy Fuel., 2001, vol. 16, no. 1, pp. 189–193. https://doi.org/10.1021/ef0101917

    Article  CAS  Google Scholar 

  29. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S. P, Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  30. Scheffer, B., Dekker, N.J.J., Mangnus, P.J., and Moulijn, J.A., J. Catal., 1990, vol. 121, no. 1, pp. 31–46. https://doi.org/10.1016/0021-9517(90)90214-5

    Article  CAS  Google Scholar 

  31. Pratt, K.C., Sanders, J.V., and Christov, V., J. Catal., 1990, vol. 124, no. 2, pp. 416–432. https://doi.org/10.1016/0021-9517(90)90189-Q

    Article  CAS  Google Scholar 

  32. Li, M., Li, H., Jiang, F., Chu, Y., and Nie, H., Catal. Today, 2010, vol. 149, no. 1–2, pp. 35–39. https://doi.org/10.1016/j.cattod.2009.03.017

    Article  CAS  Google Scholar 

  33. Al-Dalama, K. and Stanislaus, A., Energy Fuel., 2006, vol. 20, no. 5, pp. 1777–1783. https://doi.org/10.1021/ef060125a

    Article  CAS  Google Scholar 

  34. Chen, W., Maugé, F., Van Gestel, J., Nie, H., Li, D., and Long, X., J. Catal., 2013, vol. 304, pp. 47–62. https://doi.org/10.1016/j.jcat.2013.03.004

    Article  CAS  Google Scholar 

  35. Han, W., Nie, H., Long, X., Li, M., Yang, Q., and Li, D., Catal. Today, 2017, vol. 292, pp. 58–66. https://doi.org/10.1016/j.cattod.2016.11.049

    Article  CAS  Google Scholar 

  36. Vissenberg, M.J., de Bont, P.W., Gruijters, W., de Beer, V.H.J., Van der Kraan, A.M., Van Santen, R.A., and Van Veen, J.A.R., J. Catal., 2000, vol. 189, no. 1, pp. 209–220. https://doi.org/10.1006/jcat.1999.2696

    Article  CAS  Google Scholar 

  37. Gandubert, A.D., Krebs, E., Legens, C., Costa, D., Guillaume, D., and Raybaud, P., Catal. Today, 2008, vol. 130, no. 1, pp. 149–159. https://doi.org/10.1016/j.cattod.2007.06.041

    Article  CAS  Google Scholar 

  38. Vinogradov, N.A., Pimerzin, A.A., Vutolkina, A.V., and Glotov, A.P., Mater. Today Chem., 2024, vol. 36, pp. 101941. https://doi.org/10.1016/j.mtchem.2024.101941

    Article  CAS  Google Scholar 

  39. Bouwens, S.M.A.M., Vanzon, F.B.M., Vandijk, M.P., Vanderkraan, A.M., Debeer, V.H.J., Vanveen, J.A.R., and Koningsberger, D.C., J. Catal., 1994, vol. 146, no. 2, pp. 375–393. https://doi.org/10.1006/jcat.1994.1076

    Article  CAS  Google Scholar 

  40. Nikulshin, P.A., Ishutenko, D.I., Mozhaev, A.A., Maslakov, K.I., and Pimerzin, A.A., J. Catal., 2014, vol. 312, pp. 152–169. https://doi.org/10.1016/j.jcat.2014.01.014

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Russian Science Foundation (project no. 19-79-10016, https://rscf.ru/project/19-79-10016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vinogradov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, N.A., Elizarova, V.I., Vutolkina, A.V. et al. CoMo Sulfide Catalysts Supported on Natural Halloysite Nanotubes: Dealumination as an Effective Approach to Improve Catalytic Performance. Pet. Chem. (2024). https://doi.org/10.1134/S0965544124030071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0965544124030071

Keywords:

Navigation