Log in

Selective Hydrogenation of Phenol Using a Ni2P Catalyst Supported on Mesoporous Polymeric Nanospheres

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper describes the synthesis of a Ni2P-NSMR catalyst based on nickel phosphides supported on a nanospherical mesoporous resorcinol–formaldehyde polymer. The catalyst was tested in the hydrogenation of phenol at 220, 270, and 320°C and at a hydrogen pressure of 6.0 MPa. The cyclohexanone selectivity and phenol conversion in the presence of Ni2P nanoparticles supported on the mesoporous polymer amounted to 92 and 17%, respectively, compared to 80 and 13% in the presence of unsupported Ni2P nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chen, H. and Sun, J., J. Ind. Eng. Chem., 2021, vol. 94, pp. 78–91. https://doi.org/10.1016/j.jiec.2020.11.022

    Article  CAS  Google Scholar 

  2. Kong, X., Gong, Y., Mao, S., and Wang, Y., ChemNanoMat., 2018, vol. 4, no. 5, pp. 432–450. https://doi.org/10.1002/cnma.201800031

    Article  CAS  Google Scholar 

  3. He, J., Lu, X.H., Shen, Y., **g, R., Nie, R.F., Zhou, D., and **a, Q.H., J. Mol. Catal. A: Chem., 2017, vol. 440, pp. 87–95. https://doi.org/10.1016/j.mcat.2017.07.016

    Article  CAS  Google Scholar 

  4. Shin, E.-J. and Keane, M.A., Ind. Eng. Chem. Res., 2000, vol. 39, no. 4, pp. 883–892. https://doi.org/10.1021/ie990643r

    Article  CAS  Google Scholar 

  5. Zhao, C., Kasakov, S., He, J.Y., and Lercher, J.A., J. Catal., 2012, vol. 296, pp. 12–23. https://doi.org/10.1016/j.jcat.2012.08.017

    Article  CAS  Google Scholar 

  6. Huang, Y., **a, S., and Ma, P., Catal. Commun., 2017, vol. 89, pp. 111–116. https://doi.org/10.1016/j.catcom.2016.11.002

    Article  CAS  Google Scholar 

  7. **ang, Y., Li, X., Lu, C., Ma, L., Yuan, J., and Feng, F., Ind. Eng. Chem. Res., 2011, vol. 50, no. 6, pp. 3139–3144. https://doi.org/10.1021/ie101411h

    Article  CAS  Google Scholar 

  8. Xu, Y., Peng, Z., Yu, Y., Wang, D., Liu, J., Zhang, Q., and Wang, C., New J. Chem., 2020, vol. 44, no. 13, pp. 5088–5096. https://doi.org/10.1039/C9NJ05395F

    Article  CAS  Google Scholar 

  9. Liu, H., Jiang, T., Han, B., Liang, S., and Zhou, Y., Science, 2009, vol. 326, no. 5957, pp. 1250–1252. https://doi.org/10.1126/science.1179713

    Article  CAS  PubMed  Google Scholar 

  10. Liu, S., Han, J., Wu, Q., Bian, B., Li, L., Yu, S., Song, J., Zhang, C., and Ragauskas, A.J., Catal. Lett., 2019, vol. 149, no. 9, pp. 2383–2389. https://doi.org/10.1007/s10562-019-02852-1

    Article  CAS  Google Scholar 

  11. Ertas, I.E., Gulcan, M., Bulut, A., Yurderi, M., and Zahmakiran, M., Microporous Mesoporous Mater., 2016, vol. 226, pp. 94–103. https://doi.org/10.1016/j.micromeso.2015.12.048

    Article  CAS  Google Scholar 

  12. Nelson, N.C., Manzano, J.S., Sadow, A.D., Overbury, S.H., and Slowing, I.I., ACS Catal., 2015, vol. 5, no. 4, pp. 2051–2061. https://doi.org/10.1021/cs502000j

    Article  CAS  Google Scholar 

  13. Shin, J.Y., Jung, D.J., and Lee, S.-G., ACS Catal., 2013, vol. 3, no. 4, pp. 525–528. https://doi.org/10.1021/cs400009w

    Article  CAS  Google Scholar 

  14. Zhong, J., Chen, J., and Chen, L., Catal. Sci. Technol., 2014, vol. 4, no. 10, pp. 3555–3569. https://doi.org/10.1039/C4CY00583J

    Article  CAS  Google Scholar 

  15. Gonçalves, V.O.O., de Souza, P.M., Cabioch, T., da Silva, V.T., Noronha, F.B., and Richard, F., Catal. Commun., 2019, vol. 119, pp. 33–38. https://doi.org/10.1016/j.catcom.2018.09.015

    Article  CAS  Google Scholar 

  16. Yu, Z., Wang, A., Liu, S., Yao, Y., Sun, Z., Li, X., Liu, Y., Wang, Y., Camaioni, D.M., and Lercher, J.A., Catal. Today, 2019, vol. 319, pp. 48–56. https://doi.org/10.1016/j.cattod.2018.05.012

    Article  CAS  Google Scholar 

  17. Gonçalves, V.O.O., de Souza, P.M., Cabioc’h, T., da Silva, V.T., Noronha, F.B., and Richard, F., Appl. Catal. B: Environ., 2017, vol. 219, pp. 619–628. https://doi.org/10.1016/j.apcatb.2017.07.042

    Article  CAS  Google Scholar 

  18. Yu, Z., Yao, K., Wang, Y., Yao, Y., Sun, Z., Liu, Y., Shi, C., Wang, W., and Wang, A., Catal. Today, 2021, vol. 371, pp. 179–188. https://doi.org/10.1016/j.cattod.2020.06.006

    Article  CAS  Google Scholar 

  19. de Souza, P.M., Inocêncio, C.V.M., Perez, V.I., RabeloNeto, R.C., Gonçalves, V.O.O., Jacobs, G., Richard, F., da Silva, V.T., and Noronha, F.B., Catal. Today, 2020, vol. 356, pp. 366–375. https://doi.org/10.1016/j.cattod.2019.08.028

    Article  CAS  Google Scholar 

  20. Berenguer, A., Sankaranarayanan, T.M., Gómez, G., Moreno, I., Coronado, J.M., Pizarro, P., and Serrano, D.P., Green Chem., 2016, vol. 18, no. 7, pp. 1938–1951. https://doi.org/10.1039/C5GC02188J

    Article  CAS  Google Scholar 

  21. Karakhanov, E., Maximov, A., Boronoev, M., Kulikov, L., and Terenina, M., Pure Appl. Chem., 2017, vol. 89, no. 8, pp. 1157–1166. https://doi.org/10.1515/pac-2016-1207

    Article  CAS  Google Scholar 

  22. Abutaleb, A., Lolla, D., Aljuhani, A., Shin, H.U., Ali, M.A., Yousef Hassan, A.A., Maafa, I.M.H., and Chase, G.G., Fibers, 2019, vol. 7, no. 4, p. 28. https://doi.org/10.3390/fib7040028

    Article  CAS  Google Scholar 

  23. Muylaert, I., Verberckmoes, A., De Decker, J., and Van Der Voort, P., Adv. Colloid Interface Sci., 2012, vol. 175, pp. 39–51. https://doi.org/10.1016/j.cis.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  24. Enjamuri, N., Sarkar, S., Reddy, B.M., and Mondal, J., Chem. Rec., 2019, vol. 19, no. 9, pp. 1782–1792. https://doi.org/10.1002/tcr.201800080

    Article  CAS  PubMed  Google Scholar 

  25. Boronoev, M.P., Shakirov, I.I., Ignat’eva, V.I., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2019, vol. 59, no. 12, pp. 1300–1306. https://doi.org/10.1134/S096554411912003X

    Article  CAS  Google Scholar 

  26. Shakirov, I.I., Boronoev, M.P., Zolotukhina, A.V., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2020, vol. 60, no. 10, pp. 1136–1140. https://doi.org/10.1134/S0965544120100102

    Article  CAS  Google Scholar 

  27. Gao, W., Li, S., Pal, M., Liu, Y., Wan, X., Li, W., Wang, S., Wang, C., Zheng, G., and Zhao, D., RSC Adv., 2016, vol. 6, no. 66, pp. 61064–61072. https://doi.org/10.1039/C6RA10636F

    Article  CAS  Google Scholar 

  28. Wei, J., Liang, Y., Zhang, X., Simon, G.P., Zhao, D., Zhang, J., Jiang, S., and Wang, H., Nanoscale, 2015, vol. 7, no. 14, pp. 6247–6254. https://doi.org/10.1039/C5NR00331H

    Article  CAS  PubMed  Google Scholar 

  29. d’Aquino, A.I., Danforth, S.J., Clinkingbeard, T.R., Ilic, B., Pullan, L., Reynolds, M.A., Murray, B.D., and Bussell, M.E., J. Catal., 2016, vol. 335, pp. 204–214. https://doi.org/10.1016/j.jcat.2015.12.006

    Article  CAS  Google Scholar 

  30. Sing, K.S.W., Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  31. McKeown, N.B., Budd, P.M., Msayib, K.J., Ghanem, B.S., Kingston, H.J., Tattershall, C.E., Makhseed, S., Reynolds, K.J., and Fritsch, D., Chem. Eur. J., 2005, vol. 11, no. 9, pp. 2610–620. https://doi.org/10.1002/chem.200400860

    Article  CAS  PubMed  Google Scholar 

  32. Pan, Y., Liu, Y., Zhao, J., Yang, K., Liang, J., Liu, D., Hu, W., Liu, D., Liu, Y., and Liu, C., J. Mater. Chem. A, 2015, vol. 3, no. 4, pp. 1656–1665. https://doi.org/10.1039/C4TA04867A

    Article  CAS  Google Scholar 

  33. Li, Y., Fu, J., and Chen, B., RSC Adv., 2017, vol. 7, no. 25, pp. 15272–15277. https://doi.org/10.1039/C7RA00989E

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 20-19-00380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shakirov.

Ethics declarations

E.A. Karakhanov is a member of the editorial board of the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakirov, I.I., Boronoev, M.P., Kardashev, S.V. et al. Selective Hydrogenation of Phenol Using a Ni2P Catalyst Supported on Mesoporous Polymeric Nanospheres. Pet. Chem. 61, 1111–1117 (2021). https://doi.org/10.1134/S0965544121100042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121100042

Keywords:

Navigation