Log in

Effect of Mixed Oxide Cracking Catalyst on Conversion of the Mixture of Vacuum Gas Oil and Vegetable Oil

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A number of cracking catalyst samples containing Me–Mg–Al mixed oxides have been prepared. Cobalt, zinc, copper, and cerium were used as additional metals in the mixed oxide composition. When studying the cracking of a vacuum gas oil–sunflower oil mixture, catalysts containing Co–Mg–Al or Zn–Mg–Al mixed oxides were found to increase both the conversion rate of the mixed feedstock by 5.0 wt % compared to a sample containing the mixed oxide free of additional metal, and the gasoline yield by 1.6–3.0 wt %. It was discovered that the modification of mixed oxides with cobalt or zinc cations has no significant effect on the distribution of inorganic products, thereby indicating sustained catalytic activity during the decarboxylation reaction. The catalytic tests also demonstrated that catalyst samples containing mixed Mg–Al oxides with copper cations exhibited enhanced decarbonylation effect, as well as low conversion rates of the mixed feedstock and low gasoline yield, which is probably associated with the poisoning impact of copper oxide on Y zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Corma, A., Palomares, A.E., Rey, F., and Márquez, F., J. Catal., 1997, vol. 170, no. 1, pp. 140–149. https://doi.org/10.1006/jcat.1997.1750

    Article  CAS  Google Scholar 

  2. Palomares, A.E., López-Nieto, J.M., Lázaro, F.J., López, A., and Corma, A., Appl. Catal. B, 1999, vol. 20, no. 4, pp. 257–266. https://doi.org/10.1016/S0926-3373(98)00121-0

    Article  CAS  Google Scholar 

  3. Andersson, P.-O.F., Pirjamali, M., Järås, S.G., and Boutonnet-Kizling, M., Catal. Today, 1999, vol. 53, pp. 565–573. https://doi.org/10.1016/S0920-5861(99)00144-3

    Article  CAS  Google Scholar 

  4. Polato, C.M.S., Henriques, C.A., Rodrigues, A.C.C., and Monteiro, J.L.F., Catal. Today, 2008, vols. 133– 135, pp. 534–540. https://doi.org/10.1016/j.cattod.2007.12.046

    Article  CAS  Google Scholar 

  5. Bobkova, T.V., Potapenko, O.V., Sorokina, T.P., and Doronin, V.P., Russ. J. Appl. Chem., 2017, vol. 90, no. 12, pp. 1900–1907. https://doi.org/10.1134/S1070427217120023

    Article  CAS  Google Scholar 

  6. Na, J.-G., Yi, B.E., Kim, J.N., Yi, K.B., Park, S.-Y., Park, J.-H., Kim, J.-N., and Ko, C.H., Catal. Today, 2010, vol. 156, nos. 1–2, pp. 44–48. https://doi.org/10.1016/j.cattod.2009.11.008

    Article  CAS  Google Scholar 

  7. Melero, J.A., Clavero, M.M., Calleja, G., García, A., Miravalles, R., and Galindo, T., Energy Fuels, 2010, vol. 24, pp. 707–717. https://doi.org/10.1021/ef900914e

    Article  CAS  Google Scholar 

  8. Bielansky, P., Weinert, A., Schönberger, C., Reichhold, A., Fuel Proc. Technol., 2011, vol. 92, no. 12, pp. 2305–2311. https://doi.org/10.1016/j.fuproc.2011.07.021

    Article  CAS  Google Scholar 

  9. Doronin, V.P., Potapenko, O.V., Lipin, P.V., and Sorokina, T.P., Fuel, 2013, vol. 106, pp. 757–765. https://doi.org/10.1016/j.fuel.2012.11.027

    Article  CAS  Google Scholar 

  10. Lovás, P., Hudec, P., Hadvinová, M., and Ház, A., Fuel Proc. Technol., 2015, vol. 134, pp. 223–230. https://doi.org/10.1016/j.fuproc.2015.01.038

    Article  CAS  Google Scholar 

  11. Abbasov, V., Mammadova, T., Aliyeva, N., Abbasov, M., Movsumov, N., Joshi, A., Lvov, Y., and Abdullayev, E., Fuel, 2016, vol. 181, pp. 55–63. https://doi.org/10.1016/j.fuel.2016.04.088

    Article  CAS  Google Scholar 

  12. Dupain, X., Costa, D.J., Schaverien, C.J., Makkee, M., and Moulijn, J.A., Appl. Catal. B, 2007, vol. 72, nos. 1–2, pp. 44–61. https://doi.org/10.1016/j.apcatb.2006.10.005

    Article  CAS  Google Scholar 

  13. Benson, T.J., Hernandez, R., French, W.T., Alley, E.G., and Holmes, W.E., J. Mol. Catal. A, 2009, vol. 303, nos. 1–2, pp. 117–123. https://doi.org/10.1016/j.molcata.2009.01.008

    Article  CAS  Google Scholar 

  14. Immer, J.G., Kelly, M.J., and Lamb, H.H., Appl. Catal. A, 2010, vol. 375, no. 1, pp. 134–139. https://doi.org/10.1016/j.apcata.2009.12.028

    Article  CAS  Google Scholar 

  15. Bernas, H., Eränen, K., Simakova, I., Leino, A.-R., Kordas, K., Myllyoja, J., Maki-Arvela, P., Salmi, T., and Murzin, D.Yu., Fuel, 2010, vol. 89, no. 8, pp. 2033–2039. https://doi.org/10.1016/j.fuel.2009.11.006

    Article  CAS  Google Scholar 

  16. Lipin, P.V., Potapenko, O.V., Sorokina, T.P., and Doronin, V.P., Russ. J. Appl. Chem., 2019, vol. 92, no. 10, pp. 1383–1391. https://doi.org/10.1134/S1070427219100082

    Article  CAS  Google Scholar 

  17. Doronin, V.P., Sorokina, T.P., and Duplyakin, V.K., RF Patent 2300420, 2007.

  18. Doronin, V.P., Lipin, P.V., Potapenko, O.V., Zhuravlev, Y.E., and Sorokina, T.P., Chem. Sust. Develop., 2017, vol. 25, no. 4, pp. 360–366. https://doi.org/10.15372/CSD20170404

    Article  Google Scholar 

  19. Katikaneni, S.P.R., Adjaye, J.D., Idem, R.O., and Bakhshi, N.N., Indust. Eng. Chem. Res., 1996, vol. 35, no. 10, pp. 3332–3346. https://doi.org/10.1021/ie950740u

    Article  CAS  Google Scholar 

  20. Maher, K.D. and Bressler, D.C., Biores. Technol., 2007, vol. 98, no. 12, pp. 2351–2368. Energy,

    Article  CAS  Google Scholar 

  21. Ong, Y.K. and Bhatia, S., Energy, 2010, vol. 35, no. 1, pp. 111–119. https://doi.org/10.1016/j.energy.2009.09.001

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was performed within the framework of the state assignment for BIC SB RAS (project no. AAAA-A19-119061490024-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Lipin.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipin, P.V., Potapenko, O.V., Sorokina, T.P. et al. Effect of Mixed Oxide Cracking Catalyst on Conversion of the Mixture of Vacuum Gas Oil and Vegetable Oil. Pet. Chem. 61, 60–66 (2021). https://doi.org/10.1134/S0965544121010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121010060

Keywords:

Navigation