Log in

Special Features of Cyclohexane Cracking over Dual-Zeolite Catalysts in the Presence of Sulfur and Nitrogen Compounds

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Conversions of cyclohexane and cyclohexane mixtures with 2-methylthiophene (5000 ppm S) and pyrrole (500 ppm N) over dual-zeolite cracking catalysts have been studied. The catalysts have been synthesized using zeolites Y in the HREE form and ZSM-5 modified with phosphorus. The effect of conditions (temperature in a range of 510–630°C, dilution ratio of the reaction medium with an inert gas up to 2 : 1 mol/mol) on the cracking product composition has been studied. It has been shown that an increase in temperature and the dilution ratio of the reaction medium contributes to an increase in the light olefin yield. The highest yield of C2–C4 olefins (40 wt %) has been achieved over a catalyst with an Y : ZSM-5 zeolite ratio of 1 : 3. The presence of sulfur and nitrogen compounds leads to a decrease in the feedstock conversion and an increase in the light olefin selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Sadeghbeigi, Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units, 3rd Ed. (Elsevier, Amsterdam, 2012).

    Google Scholar 

  2. G. Caeiro, J. M. Lopes, P. Magnoux, et al., J. Catal. 249, 234 (2007).

    Article  CAS  Google Scholar 

  3. G. Caeiro, A. F. Costa, H. S. Cerqueira, et al., Appl. Catal., A 320, 8 (2007).

  4. D. D. Rio, R. Bastos, and U. Sedran, Catal. Today 213, 206 (2013).

    Article  Google Scholar 

  5. J. Ruiz-Martinez, L. C. Buurmans, W. V. Knowles, et al., Appl. Catal., A 419–420, 84 (2012).

  6. H. S. Cerqueira, G. Caeiro, L. Costa, and F. R. Ribeiro, J. Mol. Catal., A 292, 1 (2008).

  7. T. V. Bobkova, O. V. Potapenko, V. P. Doronin, and T. P. Sorokina, Fuel Process. Technol. 172, 172 (2018).

    Article  CAS  Google Scholar 

  8. A. Corma, C. Vartinez, G. Ketley, and G. Blair, Appl. Catal., A 208, 135 (2001).

  9. J.-O. Barth, A. Jentys, and J. A. Lercher, Ind. Eng. Chem. Res. 43, 2368 (2004).

    Article  CAS  Google Scholar 

  10. I. V. Babich, K. Seshan, and L. Lefferts, Appl. Catal., B 59, 205 (2005).

    Article  CAS  Google Scholar 

  11. T. C. Ho, A. R. Katritzky, and S. J. Cato, Ind. Eng. Chem. Res. 31, 1589 (1992).

    Article  CAS  Google Scholar 

  12. R. H. Harding, R. R. Gatte, J. A. Whitecavage, and R. F. Wormsbecher, ACS Symposium Series, vol. 552: Environmental Catalysis, Ed. by J. N. Armor (American Chemical Society, Washington. DC, 1994), p. 286.

  13. F. Hernandez-Beltran, R. Quintana-Solorzano, J. Sanchez-Valente, et al., Appl. Catal., B 42, 145 (2003).

    Article  CAS  Google Scholar 

  14. X. Chen, T. Li, L. **n, et al., Catal. Commun. 74, 95 (2016).

    Article  CAS  Google Scholar 

  15. O. V. Potapenko, V. P. Doronin, T. P. Sorokina, et al., Appl. Catal., B 117–118, 177 (2012).

    Article  Google Scholar 

  16. T. V. Bobkova, V. P. Doronin, O. V. Potapenko, et al., Catal. Ind. 6, 218 (2014).

    Article  Google Scholar 

  17. X. Zhao, A. W. Peters, and G. W. Weatherbee, Ind. Eng. Chem. Res. 36, 4535 (1997).

    Article  CAS  Google Scholar 

  18. J. A. Valla, E. Mourikr, A. A. Lappas, and I. A. Vasalos, Catal. Today 127, 92 (2007).

    Article  CAS  Google Scholar 

  19. A. Corma, P. Gullbrand, and G. Martinez, Stud. Surf. Sci. Catal. 134, 153 (2001).

    Article  CAS  Google Scholar 

  20. F. J. Passamonti, G. de la Puente, and U. Sedran, Catal. Today 133–135, 314 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.P. Talzi, S.N. Evdokimov, T.I. Gulyaeva, A.V. Babenko, and R.R. Izmailov (Laboratory of analytical and physicochemical research methods, Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences). This work was performed using the equipment of the Shared-Use Center “National Center for Catalyst Research” at the Boreskov Institute of Catalysis (Siberian Branch, Russian Academy of Sciences).

Funding

This work was supported in part of applied research by the Ministry of Education and Science of the Russian Federation, agreement no. 05.607.21.0309 (project unique identifier RFMEFI60719X0309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Potapenko.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapenko, O.V., Plekhova, K.S., Gaifullina, E.V. et al. Special Features of Cyclohexane Cracking over Dual-Zeolite Catalysts in the Presence of Sulfur and Nitrogen Compounds. Pet. Chem. 60, 490–498 (2020). https://doi.org/10.1134/S0965544120040131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120040131

Keywords:

Navigation