Log in

The role of sulfur in modification of active sites of reforming catalysts

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The features of the interaction of hydrogen sulfide with the surface of supports (alumina and silica) and catalysts (Pt/SiO2, Pt/Al2O3, Re/Al2O3, and Pt–Re/Al2O3) have been studied. It has been found that the adsorption of sulfur on the supports is completely reversible. The amount of irreversibly adsorbed sulfur (Sirrev) and Sirrev/metal ratios in the catalysts after treatment in a hydrogen atmosphere at 500°C have been determined. Sulfurization reduces the dispersion of platinum to 5% and increases the amount of ionic platinum on the catalyst surface. Regarding the dehydrocyclization reaction of n-heptane, the optimal amount of sulfur required for sulfurization of the catalyst with the composition 0.25% Pt 0.3% Re/γ-Al2O3 (0.3% Zr) is 0.072 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Kolesnikov Catalysis and Production of Catalysts (Tekhnika, Moscow, 2004) [in Russian].

    Google Scholar 

  2. G. N. Maslyanskii and R. N. Shapiro, Catalytic Reforming of Gasolines (Khimiya, Moscow, 1985) [in Russian].

    Google Scholar 

  3. G. J. Antos, A. M. Aitani, and J. M. Parera, Catalytic Naphtha Reforming: Science and Technology (Marcel Dekker, New York, 1995).

    Google Scholar 

  4. E. D. Ivanchina, Extended Abstract of Doctoral Dissertation in Engineering (Tomsk, 2002).

    Google Scholar 

  5. A. I. Solovykh, V. E. Somov, Yu. L. Kraev, and A. V. Veki, Neftepererab. Neftekhim., No. 9, 17 (2005).

    Google Scholar 

  6. J. Barbier, P. Marecot, L. Tifouti, et al., Appl. Catal. 19, 375 (1985).

    Article  CAS  Google Scholar 

  7. J. R. Regalbuto, O. Ansel, and J. T. Miller, Top. Catal. 39, 237 (2006).

    Article  CAS  Google Scholar 

  8. C. G. Michel, W. E. Bambrick, and R. H. Ebel, Fuel Process. Technol. 35, 159 (1993).

    Article  CAS  Google Scholar 

  9. A. S. Belyi, D. I. Kiryanov, M. D. Smolikov, et al., React. Kinet. Catal. Lett. 53, 183 (1994).

    Article  CAS  Google Scholar 

  10. A. S. Belyi, M. D. Smolikov, D. I. Kiryanov, and I. E. Udras, Ross. Khim. Zh. 51 (4), 38 (2007).

    CAS  Google Scholar 

  11. I. E. Udras, E. V. Zatolokina, E. A. Paukshtis, and A. S. Belyi, Kinet. Catal. 51, 81 (2010).

    Article  CAS  Google Scholar 

  12. M. D. Smolikov, O. V. Dzhikiya, E. V. Zatolokina, et al., Pet. Chem. 49, 473 (2009).

    Article  Google Scholar 

  13. GOST (State Standard) 22387.9-97: Combustible Natural Gases: Methods for Determination of Hydrogen Sulfide and Mercaptan Sulfur (Standartinform, Moscow, 2006).

  14. G. C. Bond, Fundamental and Applied Catalysis: Metal-Catalysed Reactions of Hydrocarbons (Springer Science + Business Media, New York, 2005).

    Google Scholar 

  15. V. Jaiboon, B. Yoosuk, and P. Prasassarakich, Fuel Process. Technol. 128, 276 (2014).

    Article  CAS  Google Scholar 

  16. A. Ionescu, A. Allouche, J.-P. Aycard, et al., J. Phys. Chem. B, 106, 9359 (2002).

    Article  CAS  Google Scholar 

  17. A. Melchor, E. Garbowski, M. V. Mathieu, and M. Primet, React. Kinet. Catal. Lett. 29, 371 (1985).

    Article  CAS  Google Scholar 

  18. D. Laurenti, K. T. Ninh Thi, N. Escalona, et al., Catal. Today 130, 50 (2008).

    Article  CAS  Google Scholar 

  19. P. Arnoldy, van den Heijkant, V. H. P. de Beer, and J. A. Moulijn, Appl. Catal. 23, 81 (1986).

    Article  CAS  Google Scholar 

  20. Y. Yosimura, M. Toba, T. Matsui, et al., Appl. Catal., A 322, 152 (2007).

    Article  Google Scholar 

  21. J.-R. Chang, S.-L. Chang, and T.-B. Lin, J. Catal. 169, 338 (1997).

    Article  CAS  Google Scholar 

  22. C. L. Pieck, M. B. Gonzales, and J. M. Parera, Appl. Catal., A 205, 305 (2001).

    Article  CAS  Google Scholar 

  23. V. K. Shum, J. B. Butt, and W. M. H. Sachtler, J. Catal. 96, 371 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Tregubenko.

Additional information

Original Russian Text © V.Yu. Tregubenko, A.G. Proskura, A.S. Belyi, 2017, published in Neftekhimiya, 2017, Vol. 57, No. 1, pp. 109–116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tregubenko, V.Y., Proskura, A.G. & Belyi, A.S. The role of sulfur in modification of active sites of reforming catalysts. Pet. Chem. 57, 106–113 (2017). https://doi.org/10.1134/S0965544116090206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116090206

Keywords

Navigation