Log in

Computation of Seismic Resistance of an Ice Island by the Grid-Characteristic Method on Combined Grids

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The goal of this study is to develop and apply a grid-characteristic numerical algorithm for determining damage to an offshore object (ice island) by computing seismic wave propagation from an earthquake hypocenter located at a depth of several kilometers taking into account specific features of the Northern Seas (shallow depths). The grid-characteristic method on combined grids is used for this purpose. A single run involves more than 25 separate grids differing from each other in the system of equations to be solved, the type of the numerical scheme, and the step sizes in coordinates. Some of these grids make up a set of embedded hierarchical ones with a multiple step in coordinate, while the others are conformal to each other. Additionally, an improved nonreflecting condition is used, which assumes a sharp increase in the step size in coordinate and the application of a dissipative difference scheme. Special attention is given to the computational algorithms used on the boundaries and interfaces of the separate grids, which make it possible to implement the proposed approach with the use of the grid-characteristic method on combined grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. A. J. Crawford, D. R. Mueller, E. R. Humphreys, T. Carrieres, and H. Tran, “Surface ablation model evaluation on a drifting ice island in the Canadian Arctic,” Cold Reg. Sci. Technol. 110, 170–182 (2015).

    Article  Google Scholar 

  2. A. Crawford, G. Crocker, D. Mueller, L. Desjardins, R. Saper, and T. Carrieres, “The Canadian ice island drift, deterioration, and detection (CI2D3) database,” J. Glaciol. 64 (245), 517–521 (2018).

    Article  Google Scholar 

  3. Y. Xunqiang, L. Jianbo, W. Chenglin, and L. Gao, “ANSYS implementation of dam** solvent stepwise extraction method for nonlinear seismic analysis of large 3-D structures,” Soil Dyn. Earthquake Eng. 44, 139–152 (2013).

    Article  Google Scholar 

  4. Z. Nikolic, N. Zivaljic, H. Smoljanovic, and I. Balic, “Numerical modelling of reinforced concrete structures under seismic loading based on the finite element method with discrete inter element cracks,” Earthquake Eng. Struct. Dyn. 46 (1), 159–178 (2017).

    Article  Google Scholar 

  5. M. L. Yaghin and M. A. Hesari, “Dynamic analysis of the arch concrete dam under earthquake force with ABAQUS,” J. Appl. Sci. 8 (15), 2648–2658 (2008).

    Article  Google Scholar 

  6. P. Moczo, J. O. Robertsson, and L. Eisner, “The finite-difference time-domain method for modeling of seismic wave propagation,” Adv. Geophys. 48, 421–516 (2007).

    Article  Google Scholar 

  7. E. H. Saenger and S. A. Shapiro, “Effective velocities in fractured media: a numerical study using the rotated staggered finite-difference grid,” Geophys. Prospect. 50 (2), 183–194 (2002).

    Article  Google Scholar 

  8. R. A. Slawinski and E. S. Krebes, “Finite-difference modeling of SH-wave propagation in nonwelded contact media,” Geophysics 67 (5), 1656–1663 (2002).

    Article  Google Scholar 

  9. I. B. Petrov, A. V. Favorskaya, M. N. Favorskaya, S. S. Simakov, and L. C. Jain, “Development and applications of computational methods,” Smart Innovation Syst. Technol. 133, 3–7 (2019).

    Article  Google Scholar 

  10. D. Komatitsch, J. P. Vilotte, R. Vai, J. M. Castillo-Covarrubias, and F. J. Sanchez-Sesma, “The spectral element method for elastic wave equations—application to 2-D and 3-D seismic problems,” Int. J. Numer. Methods Eng. 45 (9), 1139–1164 (1999).

    Article  Google Scholar 

  11. D. Komatitsch and J. Tromp, “Introduction to the spectral element method for three-dimensional seismic wave propagation,” Geophys. J. Int. 139 (3), 806–822 (1999).

    Article  Google Scholar 

  12. E. Priolo, J. M. Carcione, and G. Seriani, “Numerical simulation of interface waves by high-order spectral modeling techniques,” J. Acoust. Soc. Am. 95 (2), 681–693 (1994).

    Article  Google Scholar 

  13. M. Kaser and M. Dumbser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes: I. The two-dimensional isotropic case with external source terms,” Geophys. J. Int. 166 (2), 855–877 (2006).

    Article  Google Scholar 

  14. M. Dumbser and M. Kaser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes: II. The three-dimensional isotropic case,” Geophys. J. Int. 167 (1), 319–336 (2006).

    Article  Google Scholar 

  15. L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, “A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media,” J. Comput. Phys. 229 (24), 9373–9396 (2010).

    Article  MathSciNet  Google Scholar 

  16. J. De Basabe, S. Mrinal, and M. Wheeler, “The interior penalty discontinuous Galerkin method for elastic wave propagation: Grid dispersion,” Geophys. J. Int. 175 (1), 83–93 (2008).

    Article  Google Scholar 

  17. A. V. Favorskaya, N. I. Khokhlov, and I. B. Petrov, “Grid-characteristic method on joint structured regular and curved grids for modeling coupled elastic and acoustic wave phenomena in objects of complex shape,” Lobachevskii J. Math. 41 (4), 512–525 (2020).

    Article  MathSciNet  Google Scholar 

  18. V. I. Golubev, I. B. Petrov, and N. I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method,” Comput. Math. Math. Phys. 53 (10), 1523–1533 (2013).

    Article  MathSciNet  Google Scholar 

  19. A. V. Favorskaya, A. V. Breus, and B. V. Galitskii, “Application of the grid-characteristic method to the seismic isolation model,” Smart Innovation Syst. Technol. 133, 167–181 (2018).

    Article  Google Scholar 

  20. A. Favorskaya, V. Golubev, and D. Grigorievyh, “Explanation of the difference in destructed areas simulated using various failure criteria by the wave dynamics analysis,” Procedia Comput. Sci. 126, 1091–1099 (2018).

    Article  Google Scholar 

  21. M. Karulina, A. Marchenko, E. Karulin, D. Sodhi, A. Sakharov, and P. Chistyakov, “Full-scale flexural strength of sea ice and freshwater ice in Spitsbergen fjords and North-West Barents Sea,” Appl. Ocean Res. 90, Paper No. 101853 (2019).

  22. J. Schwarz, R. Frederking, V. Gavrilo, I. G. Petrov, K. I. Hirayama, M. Mellor, P. Tryde, and K. D. Vaudry, “Standardized testing methods for measuring mechanical properties of sea ice,” Cold Reg. Sci. Technol. 4 (3), 245–253 (1981).

    Article  Google Scholar 

  23. A. Marchenko, E. Karulin, P. Chistyakov, S. Sodhi, M. Karulina, and A. Sakharov, “Three dimensional fracture effects in tests with cantilever and fixed ends beams,” Proceedings of the 22th IAHR Symposium on Ice (2014), Paper No. 1178.

  24. S. J. Jones, R. E. Gagnon, A. Derradji, and A. Bugden, “Compressive strength of iceberg ice,” Can. J. Phys. 81 (1–2), 191–200 (2003).

    Article  Google Scholar 

  25. S. J. Jones, “A Review of the strength of iceberg and other freshwater ice and the effect of temperature,” Cold Reg. Sci. Technol. 47 (3), 256–262 (2007).

    Article  Google Scholar 

  26. A. V. Favorskaya and I. B. Petrov, “A study of high-order grid-characteristic methods on unstructured grids,” Numer. Anal. Appl. 9 (2), 171–178 (2016).

    Article  MathSciNet  Google Scholar 

  27. I. B. Petrov, A. V. Favorskaya, and N. I. Khokhlov, “Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves,” Comput. Math. Math. Phys. 57 (11), 1771–1777 (2017).

    Article  MathSciNet  Google Scholar 

  28. A. Breus, A. Favorskaya, V. Golubev, A. Kozhemyachenko, and I. Petrov, “Investigation of seismic stability of high-rising buildings using grid-characteristic method,” Procedia Comput. Sci. 154, 305–310 (2019).

    Article  Google Scholar 

  29. A. Favorskaya and V. Golubev, “Study the elastic waves propagation in multistory buildings, taking into account dynamic destruction,” Smart Innovation Syst. Technol. 193, 189–199 (2020).

    Article  Google Scholar 

  30. A. V. Favoskaya and I. B. Petrov, “Calculation the earthquake stability of various structures using the grid-characteristic method,” Radioelektron. Nanosist. Inf. Tekhnol. 11 (3), 345–350 (2019).

    Google Scholar 

  31. A. Favorskaya, “Computation the bridges earthquake resistance by the grid-characteristic method,” Smart Innovation Syst. Technol. 193, 179–187 (2020).

    Article  Google Scholar 

  32. A. V. Favorskaya, M. S. Zhdanov, N. I. Khokhlov, and I. B. Petrov, “Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method,” Geophys. Prospect. 66 (8), 1485–1502 (2018).

    Article  Google Scholar 

  33. A. V. Favorskaya and I. B. Petrov, “Grid-characteristic method,” Smart Innovation Syst. Technol. 90, 117–160 (2018).

    Article  MathSciNet  Google Scholar 

  34. R. Courant, E. Isaacson, and M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences,” Commun. Pure Appl. Math. 5 (3), 243–255 (1952).

    Article  MathSciNet  Google Scholar 

  35. A. S. Kholodov and Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations,” Comput. Math. Math. Phys. 46 (9), 1560–1588 (2006).

    Article  MathSciNet  Google Scholar 

  36. A. Favorskaya and I. Petrov, “A novel method for investigation of acoustic and elastic wave phenomena using numerical experiments,” Theor. Appl. Mech. Lett. 10 (5), 307–314 (2020).

    Article  Google Scholar 

  37. A. A. Favorskaya, “Novel method for wave phenomena investigation,” Procedia Comput. Sci. 159, 1208–1215 (2019).

    Article  Google Scholar 

  38. A. Favorskaya, A. Kabanova, and I. Petrov, “Applying Wave Logica method for geophysical prospecting,” Proceedings of Geomodel Conference, Gelendzhik, Russia (European Association of Geoscientists and Engineers, 2018), pp. 1–5.

  39. A. V. Favorskaya, “Elastic wave scattering on a gas-filled fracture perpendicular to plane P-wave front,” Smart Innovation Syst. Technol. 173, 213–224 (2020).

    Article  Google Scholar 

  40. A. V. Favorskaya and I. B. Petrov, “The use of full-wave numerical simulation for the investigation of fractured zones,” Math. Models Comput. Simul. 11 (4), 518–530 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-11-00023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Favorskaya.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, I.B., Favorskaya, A.V. Computation of Seismic Resistance of an Ice Island by the Grid-Characteristic Method on Combined Grids. Comput. Math. and Math. Phys. 61, 1339–1352 (2021). https://doi.org/10.1134/S0965542521060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521060129

Keywords:

Navigation