Log in

Gneisses and Granitoids of the Basement of the Nepa-Botuoba Anteclise: Constraints for Relation of the Archean and Paleoproterozoic Crust in the Boundary Zone between the Tungus Superterrane and Magan Terrane (South Siberian Craton)

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents geochemical and geochronological data on gneisses and granitoids from three deep boreholes (Yalykskaya-4, Danilovskaya-532, Srednenepskaya-1) in the basement of the southwestern part of the Nepa-Botuoba anteclise. Based on U-Pb zircon dating, three stages of granitoid magmatism were identified: ∼2.8, 2.0 and 1.87 Ga. At ca. 2.8 Ga magmatic TTG protoliths of biotite–amphibole gneisses (Yalykskaya-4 borehole) were formed, these rocks represent the Mesoarchean crust and experienced thermal effects typical of the Tungus superterrane of the Siberian craton at the terminal Neoarchean (∼2.53 Ga). Biotite gneissic granites (∼2.0 Ga) (Danilovskaya-532 borehole), which correlate in age with the granitoids of the basement of the Magan terrane and the Akitkan orogenic belt, were derived from a metasedimentary source formed by the erosion of predominantly Paleoproterozoic juvenile crust rocks. The 1.88 Ga A-type granite (Srednenepskaya-1 borehole) corresponds to the main stage of post-collision granite magmatism within the South Siberian magmatic belt. The ca. 2.8 Ga biotite–amphibole gneisses mark the eastern boundary of the Archean crust with Paleoproterozoic juvenile crust in the south of the Tungus superterrane, which are separated by a transitional zone intruded by granites having intermediate isotopic characteristics. The isotopic composition of Paleoproterozoic gneisses and granitoids indicates that marginal southern Magan terrane in contact with the Tungus superterrane includes blocks of both Archean and Paleoproterozoic crust, thus showing similarity with the Akitkan orogenic belt and accretionary orogens. The final amalgamation of the Tungus superterrane with blocks of the eastern part of the Siberian platform basement corresponds to a milestone of 1.88 Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Anikina, E.V., Malitch, K.N., Belousova, E.A., Badanina, I.Yu., Soloshenko, N.G., Rusin, I.A., and Alekseev, A.V., U–Pb Age and Hf–Nd–Sr Isotopic Systematics of Vein Rocks of the Volkovsky Massif, Middle Urals, Russia, Geochem. Int., 2018, vol. 56, no. 3, pp. 199–210. https://doi.org/10.1134/s0016702918030023

    Article  CAS  Google Scholar 

  2. Bibikova, E.V., Turkina, O.M., Kirnozova, T.I., and Fugzan, M.M., Ancient plagiogneisses of the onot block of the Sharyzhalgai metamorphic massif: Isotopic geochronology, Geochem. Int., 2006, vol. 44, no. 3, pp. 310–315. https://doi.org/10.1134/s0016702906030098

    Article  Google Scholar 

  3. Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., and Foudoulis, C., Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 2004, vol. 205, nos. 1–2, pp. 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003

    Article  CAS  Google Scholar 

  4. Donskaya, T.V., Assembly of the Siberian Craton: Constraints from Paleoproterozoic granitoids, Precambrian Res., 2020, vol. 348, p. 105869. https://doi.org/10.1016/j.precamres.2020.105869

    Article  CAS  Google Scholar 

  5. Donskaya, T.V. and Gladkochub, D.P., Post-collisional magmatism of 1.88–1.84 Ga in the southern Siberian Craton: An overview, Precambrian Res., 2021, vol. 367, p. 106447. https://doi.org/10.1016/j.precamres.2021.106447

    Article  CAS  Google Scholar 

  6. Donskaya, T.V., Bibikova, E.V., Gladkochub, D.P., Mazukabzov, A.M., Bayanova, T.B., De Waele, B., Didenko, A.N., Bukharov, A.A., and Kirnozova, T.I., Petrogenesis and age of the felsic volcanic rocks from the North Baikal volcanoplutonic belt, Siberian craton, Petrology, 2008, vol. 16, no. 5, pp. 422–447. https://doi.org/10.1134/s0869591108050020

    Article  CAS  Google Scholar 

  7. Donskaya, T.V., Gladkochub, D.P., Pisarevsky, S.A., Poller, U., Mazukabzov, A.M., and Bayanova, T.B., Discovery of Archaean crust within the Akitkan orogenic belt of the Siberian craton: New insight into its architecture and history, Precambrian Res., 2009, vol. 170, nos. 1–2, pp. 61–72. https://doi.org/10.1016/j.precamres.2008.12.003

    Article  CAS  Google Scholar 

  8. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., Presnyakov, S.L., and Bayanova, T.B., Paleoproterozoic granitoids of the Chuya and Kutima complexes (southern Siberian craton): age, petrogenesis, and geodynamic setting, Russ. Geol. Geophys., 2013, vol. 54, no. 3, pp. 283–296. https://doi.org/10.1016/j.rgg.2013.02.004

    Article  Google Scholar 

  9. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., and Wingate, M.T.D., Early Proterozoic postcollisional granitoids of the Buryusa block of the Siberian Craton, Russ. Geol. Geophys., 2014, vol. 55, no. 7, pp. 812–823. https://doi.org/10.1016/j.rgg.2014.06.002

  10. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., and Lepekhina, E.N., Age and sources of the Paleoproterozoic premetamorphic granitoids of the Goloustnaya block of the Siberian craton: Geodynamic applications, Petrology, 2016, vol. 24, no. 6, pp. 543–561. https://doi.org/10.1134/s0869591116050040

    Article  CAS  Google Scholar 

  11. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., L’vov, P.A., Demonterova, E.I., and Motova, Z.L., Sayan–Biryusa Volcanoplutonic Belt (Southern Siberian Craton): Age and Petrogenesis, Russ. Geol. Geophys., 2019a, vol. 60, no. 1, pp. 14–32. https://doi.org/10.15372/rgg2019002

    Article  Google Scholar 

  12. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., et al., Formation of the structure of the southern-southwestern part of the Siberian Craton in the Early Proterozoic, Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu): Materialy soveshchaniya (Geodynamic Evolution of Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent. Proc. Conference)), Irkutsk: Institut zemnoi kory SO RAN, 2019b, vol. 17, pp. 86–87.

  13. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., A geochemical classification for granitic rocks, J. Petrol., 2001, vol. 42, no. 11, pp. 2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  CAS  Google Scholar 

  14. Frost, C.D. and Frost, B.R., On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin, J. Petrol., 2011, vol. 52, no. 1, pp. 39–53. https://doi.org/10.1093/petrology/egq070

    Article  CAS  Google Scholar 

  15. Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., et al., The age and geodynamic interpretation of the Kitoi granitoid complex (southern Siberian craton), Russ. Geol. Geophys., 2005, vol. 46, no. 11, pp. 1121–1133.

    Google Scholar 

  16. Gladkochub, D., Pisarevsky, S., Donskaya, T., Natapov, L., Mazukabzov, A., Stanevich, A., and Sklyarov, E., The Siberian Craton and its evolution in terms of the Rodinia hypothesis, Episodes, 2006, vol. 29, no. 3, pp. 169–174. https://doi.org/10.18814/epiiugs/2006/v29i3/002

    Article  Google Scholar 

  17. Glebovitsky, V.A., Khil’tova, V., Ya, and Kozakov, I.K., Tectonics of the Siberian Craton: Interpretation of Geological, Geophysical, Geochronological, and Isotopic Geochemical Data, Geotectonics, 2008, vol. 42, no. 1, pp. 8–20.

    Article  Google Scholar 

  18. Griffin, W.L., Powell, W.J., Pearson, N.J., and O’Reilly, S.Y., GLITTER: Data reduction software for laser ablation ICP-MS, Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Sylvester, P., Ed., Short Course Series, vol. 40, Mineralogical Association of Canada, 2008, pp. 307–311.

  19. Grishin, M.P. and Surkov, V.S., Karta tektonicheskogo raionirovaniya fundamenta Sibirskoi platformy, masshtab: 1 : 5 000 000 (Map of Tectonic Zonin of the Siberian Platform Basement on a Scale), St. Petersburg:1979. https://www.geokniga.org/maps/16746.

  20. Gusev, N.I., Rudenko, V.E., Berezhnaya, N.G., and Dr, Isotope-geochemical features and age (SHRIMP) of metamorphic and igneous rocks in the Kotuikan-Monkholin zone of the Anabar Shield, Regional. Geol. Metallogen., 2013, no. 54, pp. 49–59.

  21. Hoskin, P.W.O. and Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis, Zircon, Hanchar, J.M. and Hoskin, P.W.O., Eds., Washington, D.C: Rev. Mineral. Geochem. Mineral. Soc. Amer., 2003, vol. 53, pp. 27–62. https://doi.org/10.1515/9781501509322-005

  22. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Be-lousova, E.A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chem. Geol., 2004, vol. 211, nos. 1–2, pp. 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017

    Article  CAS  Google Scholar 

  23. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd isotopic evolution of chondrites and achondrites, II, Earth Planet. Sci. Lett., 1984, vol. 67, no. 2, pp. 137–150. https://doi.org/10.1016/0012-821x(84)90109-2

    Article  CAS  Google Scholar 

  24. Kovach, V.P., Kotov, A.B., Smelov, A.P., Larin, A.M., Salnikova, E.B., and Kozakov, I.K., Evolutionary stages of the continental crust in the buried basement of the Eastern Siberian Platform: Sm-Nd isotopic data, Petrology, 2000, vol. 4, no. 4, pp. 353–365.

    Google Scholar 

  25. Larichev, A.I., Vidik, S.V., Sergeev, S.A., and Osadchiy, I.V., Petrographic description and age of Aldan–Anabar block rocks of the Siberian Platform basement according to deep well logs, Regional. Geol. Metallogen., 2022, no. 92, pp. 28–40.

  26. Laurent, O., Martin, H., Moyen, J.F., and Doucelance, R., The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5Ga, Lithos, 2014, vol. 205, pp. 208–235. https://doi.org/10.1016/j.lithos.2014.06.012

    Article  CAS  Google Scholar 

  27. Ludwig K R, ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel, erkeley Geochronology Center, Berkley, 2012, pp. 1–70. https://doi.org/10.2172/7279728

  28. Martin, H., The Archean grey gneisses and the genesis of continental crust, Archean Crustal Evolution, Amsterdam: Elsevier, 1994, pp. 205–259. https://doi.org/10.1016/s0166-2635(08)70224-x

  29. Nikolaeva, I.V., Palesskii, S.V., Koz’menko, O.A., and Anoshin, G.N., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS), Geochem. Int., 2008, vol. 46, no. 10, pp. 1016–1022. https://doi.org/10.1134/s0016702908100066

    Article  Google Scholar 

  30. Panteeva, S.V., Gladkochoub, D.P., Donskaya, T.V., Markova, V.V., and Sandimirova, G.P., Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion, Spectrochim. Acta Part B: At. Spectrosc., 2003, vol. 58, no. 2, pp. 341–350. https://doi.org/10.1016/s0584-8547(02)00151-9

    Article  Google Scholar 

  31. Patiño Douce, A.E. and Harris, N., Experimental constraints on Himalayan anatexis, J. Petrol., 1998, vol. 39, no. 4, pp. 689–710. https://doi.org/10.1093/petrology/39.4.689

    Article  Google Scholar 

  32. Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., and Chenery, S.P., A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials, Geostand. Newslet., 2007, vol. 21, no. 1, pp. 115–144. https://doi.org/10.1111/j.1751-908x.1997.tb00538.x

    Article  Google Scholar 

  33. Poller, U., Gladkochub, D., Donskaya, T., Mazukabzov, A., Sklyarov, E., and Todt, W., Multistage magmatic and metamorphic evolution in the Southern Siberian Craton: Archean and Palaeoproterozoic zircon ages revealed by SHRIMP and TIMS, Precambrian Res., 2005, vol. 136, nos. 3–4, pp. 353–368. https://doi.org/10.1016/j.precamres.2004.12.003

    Article  CAS  Google Scholar 

  34. Popov, N.V., Safonova, I.Yu., Postnikov, A.A., Terleev, A.A., Komiya, T., and Tokarev, D.A., Paleoproterozoic granitoids from the basement of the central Siberian Platform (borehole Mogdinskaya-6): U-Pb age and composition, Dokl. Earth Sci., 2015, vol. 461, no. 2, pp. 334–338. https://doi.org/10.1134/s1028334x15040145

    Article  CAS  Google Scholar 

  35. Priyatkina, N., Ernst, R.E., and Khudoley, A.K., A preliminary reassessment of the Siberian cratonic basement with new U-Pb-Hf detrital zircon data, Precambrian Res., 2020, vol. 340, p. 105645. https://doi.org/10.1016/j.precamres.2020.105645

    Article  CAS  Google Scholar 

  36. Rapp, R.P. and Watson, E.B., Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust–mantle recycling, J. Petrol., 1995, vol. 36, no. 4, pp. 891–931. https://doi.org/10.1093/petrology/36.4.891

    Article  CAS  Google Scholar 

  37. Rosen, O.M., The Siberian Craton: Tectonic zonation and stages of evolution, Geotectonics, 2003, vol. 37, no. 3, pp. 175–192.

    Google Scholar 

  38. Rosen, O.M., Condie, K.C., Natapov, L.M., and Nozhkin, A.D., Archean and Early Proterozoic evolution of the Siberian Craton: A preliminary assessment, Archean Crustal Evolution, Amsterdam: Elsevier, 1994, pp. 411–459. https://doi.org/10.1016/s0166-2635(08)70228-7

  39. Rosen, O.M., Zhuravlev, D.Z., Sukhanov, M.K., and Dr, Isotopic-geochemical and age characteristics of early Proterozoic terranes, collision zones and associated anorthosites in the northeastern Siberian craton, Geol. Geofiz., 2000, vol. 41, no. 2, pp. 163–180.

    Google Scholar 

  40. Samsonov, A.V., Postnikov, V.V., Spiridonov, V.A., Larionova, Yu.O., Larionov, A.N., Travin, A.V., Postnikova, O.V., Solovyeva, N.V., Sabirov, I.A., and Spiridonov, I.V., Neoarchean granitoids in the western part of the Tunguska Superterrane, basement of the Siberian Platform: Geochronology, petrology, and tectonic significance, Petrology, 2021, vol. 29, no. 5, pp. 449–474. https://doi.org/10.1134/s0869591121050064

    Article  CAS  Google Scholar 

  41. Samsonov, A.V., Erofeeva, K.G., Larionova, Yu.O., Larionov, A.N., Kuznetsov, N.B., Romanyuk, T.V., Solovyova, N.V., Zhilicheva, O.M., Dubenskiy, A.S., and Sheshukov, V.S., Eastern margin of the Neoarchean Tunguska Superterrane: Data from boreholes in the central part of the Siberian Platform, Petrology, 2022, vol. 30, no. 6, pp. 628–639. https://doi.org/10.1134/s0869591122050058

    Article  CAS  Google Scholar 

  42. Samsonov, A.V., Erofeeva, K.G., Postnikov, A.V., et al., Paleoproterozoic Taimyr-Baikal orogen in the southern part of the Siberian craton: boundaries, composition and formation history from well cores, Tektonika i geodinamika zemnoi kory i mantii: fundamental’nye problemy-2023 (Tectonics and Geodynamics of the Earth’s Crust and Mantle: Fundamental Problems-2023), Moscow: GEOS, 2023, vol. 2, pp. 168–171.

    Google Scholar 

  43. Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., Plešovice zircon— A new natural reference material for U–Pb and Hf isotopic microanalysis, Chem. Geol., 2008, vol. 249, nos. 1–2, pp. 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

    Article  CAS  Google Scholar 

  44. Smelov, A.P. and Timofeev, V.F., The age of the North Asian cratonic basement: An overview, Gondwana Res., 2007, vol. 12, no. 3, pp. 279–288. https://doi.org/10.1016/j.gr.2006.10.017

    Article  Google Scholar 

  45. Smelov, A.P., Kotov, A.B., Sal’nikova, E.B., et al., Age and duration of the formation of the Billyakh Tectonic Melange Zone, Anabar Shield, Petrology, 2012, vol. 20, no. 3, pp. 286–300.

    Article  CAS  Google Scholar 

  46. Turkina, O.M. and Kapitonov, I.N., The sources of Paleoproterozoic collisional granitoids (Sharyzhalgai Uplift, southwestern Siberian Craton): from lithospheric mantle to upper crust, Russ. Geol. Geophys., 2019, vol. 60, no. 4, pp. 414–434. https://doi.org/10.15372/rgg2019026

    Article  Google Scholar 

  47. Turkina, O.M. and Sukhorukov, V.P., Early Precambrian granitoid magmatism of the Kitoy Block and stages of collisional events in the southwestern Siberian Craton, Russ. Geol. Geophys., 2022, vol. 63, no. 5, pp. 620–635. https://doi.org/10.2113/rgg20214385

    Article  Google Scholar 

  48. Turkina, O.M. and Izokh, A.E., Heterogeneous subcontinental lithospheric mantle below the south margin of the Siberian Craton: evidence from composition of Paleoproterozoic mafic associations, Russ. Geol. Geophys., 2024, vol. 64, no. 10, pp. 1141–1160. https://doi.org/10.15372/GiG2023124

    Article  Google Scholar 

  49. Turkina, O.M., Berezhnaya, N.G., Larionov, A.N., Lepekhina, E.N., Presnyakov, S.L., and Saltykova, T.E., Paleoarchean tonalite–trondhjemite complex in the northwestern part of the Sharyzhalgai uplift (southwestern Siberian craton): results of U-Pb and Sm-Nd study, Russ. Geol. Geophys., 2009, vol. 50, no. 1, pp. 15–28. https://doi.org/10.1016/j.rgg.2008.06.014

    Article  Google Scholar 

  50. Vielzeuf, D. and Montel, J.M., Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships, Contrib. Mineral. Petrol., 1994, vol. 117, no. 4, pp. 375–393. https://doi.org/10.1007/bf00307272

    Article  CAS  Google Scholar 

  51. Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granite: geochemical characteristics, Contrib. Mineral. Petrol, 1987, pp. 407–419.

  52. Wiedenbeck, M., Allé, P., and Corfu, F., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Newslet., 1995, vol. 19, pp. 1–23.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.N. Rudnev as well as I.V. Nikolaeva, S.V. Palessky, D.V. Semenova, A.V. Karpov, and N.G. Karmanova, the collaborators of AC MIR SB RAS (Novosibirsk), who conducted analytical studies and prepared zircon for analysis. We also thank A.V. Samsonov for careful reading of the manuscript and valuable comments.

Funding

Geochemical and isotope studies were supported by the Russian Science Foundation (grant no. 23-17-00196). A summary of the data on the Early Precambrian granitoid magmatism is done on state assignment of V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences (project no. 122041400044-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Turkina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkina, O.M., Plyusnin, A.V., Donskaya, T.V. et al. Gneisses and Granitoids of the Basement of the Nepa-Botuoba Anteclise: Constraints for Relation of the Archean and Paleoproterozoic Crust in the Boundary Zone between the Tungus Superterrane and Magan Terrane (South Siberian Craton). Petrology 32, 569–593 (2024). https://doi.org/10.1134/S0869591124700139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591124700139

Keywords:

Navigation