Log in

Amudzhikan Volcano-Plutonic Association of the Eastern Part of the West-Stanovoy Superterrane (Central Asian Orogenic Belt): Age, Sources, and Tectonic Setting

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Geochronological (U-Pb zircon, ID-TIMS), isotope-geochemical (Nd, Sr, Pb), and geochemical studies of rocks of the Amanan and Amudzhikan intrusive complexes and volcanic rocks of the Ukurey Formation in the eastern part of the West Stanovoy superterrane of the Central Asian Orogenic Belt were performed. The assignment of granitoids of these complexes to high-potassium C-type adakites is substantiated. It is established that the studied rocks are cogenetic and can be ascribed to a single Amudzhikan volcano-plutonic association formed in the age range of 133 ± 1–128 ± 1 Ma. The igneous complexes of this association belong to the Stanovoy volcano-plutonic belt, which extends in the sublatitudinal direction from the Pacific Ocean inward the North Asian continent for more than 1000 km, subparallel to the Mongol-Okhotsk suture zone, and assembles the tectonic structures of the Dzhugdzhur-Stanovoy and West-Stanovoy superterranes. The formation of the Stanovoy Belt is related to the closure of the Mongolo-Okhotsk Ocean and the collision between North Asian and Sino-Korean continents at ~140 Ma. The subsequent collapse of the collisional orogen, which was accompanied by large-scale lithospheric extension and delamination of the lower part of the continental lithosphere, led to upwelling of asthenospheric mantle. This caused melting of the lithospheric mantle and continental crust and, as a consequence, the formation of both mafic (shoshonitic) melts and anatectic crustal melts of the adakite type. The mixing of these melts led to the formation of the parental magmas of the Amudzhikan magmatic association. The crustal component in the source was of heterogeneous nature and finally formed as a result of the Early Cretaceous collision event. It is characterized by the upper-crustal isotopic signatures: increased Rb/Sr and U/Pb ratios and a decreased Sm/Nd ratio in the source. The mantle component is represented by enriched lithospheric mantle of the Central Asian Orogenic Belt, the formation of which is associated with subduction processes and closure of the Mongol-Okhotsk paleoocean. Metasomatic transformation of the mantle with the introduction of melts and fluids with isotopic parameters of an EMII-type source or upper crust occurred at this stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Berzina, A.P., Berzina, A.N., Gimon, V.O., Krymskii, R.Sh., Larionov, A.N., Nikolaeva, I.V., and Serov, P.A., The Shakhtama porphyry Mo ore-magmatic system (eastern Transbaikalia): age, sources, and genetic features, Russ. Geol. Geophys., 2013, vol. 54, no. 6, pp. 587–605. https://doi.org/10.1016/j.rgg.2013.04.009

    Article  Google Scholar 

  2. Berzina, A.P., Berzina, A.N., Gimon, V.O., Bayanova, T.B., Kiseleva, V.Yu., Krymskii, R.Sh., Lepekhina, E.N., and Palesskii, S.V., The Zhireken porphyry Mo ore-magmatic system (eastern Transbaikalia): U–Pb age, sources, and geodynamic setting, Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 446–465. https://doi.org/10.1016/j.rgg.2015.02.006

    Article  Google Scholar 

  3. Bi, J., Ge, W., Yang, H., Zhao, G., Xu, W., and Wang, Z., Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi Massif, NE China: Petrogensis and tectonic implications, Lithos, 2015, vols. 234–235, pp. 27–46. https://doi.org/10.1016/j.lithos.2015.07.015

    Article  CAS  Google Scholar 

  4. Buchko, I.V., Sorokin, A.A., Ponomarchuk, V.A., Travin, A.V., Sorokin, A.P., and Buchko, Ir.V., Trachyandesites of the Mogot volcanic field (Stanovoi volcanoplutonic belt, East Siberia): age, geochemical features, and sources, Russ. Geol. Geophys., 2016, vol. 57, no. 10, pp. 1389–1397. https://doi.org/10.1134/s1028334x10120020

    Article  Google Scholar 

  5. Castillo, P.R., An overview of adakite petrogenesis, Chin. Sci. Bull., 2006, vol. 51, no. 3, pp. 257–268. https://doi.org/10.1007/s11434-006-0257-7

    Article  Google Scholar 

  6. Chernyshev, I.V., Prokof'ev, V.Yu., Bortnikov, N.S., et al., Age of granodiorite porphyry and beresite from the Darasun gold field, Eastern Transbaikal Region, Russia, Geol. Ore Deposits, 2014, vol. 56, no. 1, pp. 1–14. https://doi.org/10.1134/S1075701514010036

  7. Chugaev, A.V., Chernyshev, I.V., Bortnikov, N.S., Kovalenker, V.A., Kiseleva, G.D., and Prokof’ev, V.Yu., Lead isotope ore provinces of eastern Transbaikalia and their relationships to regional structures: Results of high-precision MC-ICP-MS study of Pb isotopes, Geol. Ore Deposits, 2013, vol. 55, no. 4, pp. 245–255. https://doi.org/10.1134/s107570151304003x

    Article  Google Scholar 

  8. Cogné, J., Kravchinsky, V.A., Halim, N., and Hankard, F., Late Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baïkal area (SE Siberia), Geophys. J. Int., 2005, vol. 163, no. 2, pp. 813–832. https://doi.org/10.1111/j.1365-246x.2005.02782.x

    Article  Google Scholar 

  9. Condie, K.C., Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time, Geochem., Geophys., Geosyst., 2003, vol. 4, no. 1, pp. 1–28. https://doi.org/10.1029/2002gc000333

    Article  Google Scholar 

  10. Condie, K.C., High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?, Lithos, 2005, vol. 79, nos. 3–4, pp. 491–504. https://doi.org/10.1016/j.lithos.2004.09.014

    Article  CAS  Google Scholar 

  11. Davies, G.R., Stolz, A.J., Mahotkin, I.L., Nowell, G.M., and Pearson, D.G., Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites, J. Petrol., 2006, vol. 47, no. 6, pp. 1119–1146. https://doi.org/10.1093/petrology/egl005

    Article  CAS  Google Scholar 

  12. Dong, S.W., Znahg, Y.Q., Long, C.X., et al., Jurassic tectonic revolution in China and new interpretation of the Yanshan movement, Acta Geol. Sin., 2007, vol. 81, no. 11, pp. 1149–1461.

  13. Dong, Sh., Zhang, Y., and Zhang, F., Late Jurassic–Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: a synthesis of the Yanshan Revolution, J. Asian Earth Sci, 2015, vol. 114, pp. 750–770. https://doi.org/10.1016/j.jseaes.2015.08.011

    Article  Google Scholar 

  14. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., and Ivanov, A.V., Late Paleozoic–Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol–Okhotsk Ocean, J. Asian Earth Sci., 2013, vol. 62, pp. 79–97. https://doi.org/10.1016/j.jseaes.2012.07.023

    Article  Google Scholar 

  15. Dril, S.I., Kovach, V.P., Bel’kov, D.A., et al., Granitoids of the Olekma complex of Eastern Transbaikalia: U-Pb La-ICP-MS zircon geochronology and sources based on Sm-Nd isotope data, Materialy soveshchaniya “Geodinamicheskaya evoluytsiya litosfery Tsentral'no-Aziatskogo podvizhnogo boyasa (ot okeana k kontinentu) (Proc. Conference Geodyamic Evoltion of Lithosphere of the Central-Asian Mobile Belt (from ocean to continent), Irkutsk: IZK SO RAN, 2019, vol. 17, pp. 88–90.

  16. Fan, W-M., Guo, F., Wang, Y.J., and Lin, G., Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, J. Volcanol. Geotherm. Res, 2003, pp. 115–135.

  17. Farmer, G.L., Continental basaltic rocks, Treatise on Geochemistry, Holland, H.D., Ed., Elsevier, 2007, vol. 3, pp. 1–39. https://doi.org/10.1016/b0-08-043751-6/03019-x

  18. Frost, C.D. and Frost, R.B., Reduced rapakivi-type granites: The tholeiite connection, Geology, 1997, vol. 25, no. 7, pp. 647–650. https://doi.org/10.1130/0091-7613(1997)025<0647:rrtgtt>2.3.co;2

    Article  CAS  Google Scholar 

  19. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., A geochemical classification for granitic rocks, J. Petrol., 2001, vol. 42, no. 11, pp. 20332048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  20. Buchko, I.V., Sorokin, A.A., Ponomarchuk, V.A., et al., Trachyandesites of the Mogot volcanic field (Stanovoi volcanoplutonic belt, East Siberia): age, geochemical features, and sources, Russ. Geol. Geophys., 2016, vol. 57, no. 10, pp. 1389–1397. https://doi.org/10.1016/j.rgg.2016.01.017

    Article  Google Scholar 

  21. Geodinamika, magmatizm i metallogeniya vostoka Rossii (Geodinamika, Magmatism, and Metallogeny of East Russia), Khanchuk, A.I., Ed., Vladivostok: Dal’nauka, 2006, vol. 1. https://doi.org/10.35177/2226-2342

  22. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, no. 3, pp. 249–265. https://doi.org/10.1016/0012-821x(88)90013-1

    Article  CAS  Google Scholar 

  23. Gordienko, I.V., Klimuk, V.S., and Heng, Q., The Upper Amur volcano-plutonic belt in eastern Asia: (Structure, composition, and geodynamic setting), Geol. Geofiz., 2000, vol. 41, no. 12, pp. 1655–1669.

    CAS  Google Scholar 

  24. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Dal’nevostochnaya. List N-51. Skovorodino, M-51. Ob”yasnitel'naya zapiska (State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Thrid Generation). Far East Series. Sheet N-51. Skovorodino, M-51. Explanatory Note), Kozlov, E.A., Novchenko, S.A., Enikeev, F.I., Eds., Moscow: Fi. VSEGEI, 2009.

  25. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 200 000. Izdanie vtoroe. Seriya Olekminskaya. List N-50-XXXII (Vershino-Darasunskii) Ob”yasnitel'naya zapiska, (State Geological Map of the Russian Federation on a Scale 1 : 200 000. Second Edition. Olekma Series. Sheet N-50-XXXII (Vershino-Darasun). Explanatory Note), St. Petersburg: VSEGEI, 2019.

  26. Guo, Z., Wilson, M., and Liu, J., Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust, Lithos, 2007, vol. 96, nos. 1–2, pp. 205–224. https://doi.org/10.1016/j.lithos.2006.09.011

    Article  CAS  Google Scholar 

  27. Haschke, M.R. and Ben-Avraham, Z., Adakites along oceanic transforms?, EOS Transactions, AGU, 2001, vol. 82, no. 47. http://www.agu.org/meetings/wais-fm01.html.

  28. Haschke, M.R. and Ben-Avraham, Z., Adakites along oceanic transform faults?, Geophys. Res. Abstracts, 2003, vol. 5, p. 6789.

    Google Scholar 

  29. Haschke, M.R. and Ben-Avraham, Z., Adakites from collision-modified lithosphere, Geophys. Res. Lett., 2005, vol. 32, p. L15302. https://doi.org/10.1029/2005gl023468

    Article  Google Scholar 

  30. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd isotopic evolution of chondrites and achondrites, II, Earth Planet. Sci. Lett., 1984, vol. 67, no. 2, pp. 137–150. https://doi.org/10.1016/0012-821x(84)90109-2

    Article  CAS  Google Scholar 

  31. Kemp, A.I.S. and Hawkesworth, C.J., Granitic perspectives on the generation and secular evolution of the continental crust, Treatise on Geochemistry, Holland, H.D., Eds., Elsevier, 2004, vol. 3, pp. 349–410. https://doi.org/10.1016/b0-08-043751-6/03027-9

  32. Kepezhinskas, P., Defant, M.J., and Drummond, M.S., Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 7, pp. 1217–1229. https://doi.org/10.1016/0016-7037(96)00001-4

    Article  CAS  Google Scholar 

  33. Keto, L.S. and Jacobsen, S.B., Nd and Sr isotopic variations of Early Paleozoic oceans, Earth Planet. Sci. Lett., 1987, vol. 84, no. 1, pp. 27–41. https://doi.org/10.1016/0012-821x(87)90173-7

    Article  CAS  Google Scholar 

  34. Khanchuk, A.I. and Ivanov, V.V., Meso-Kainozoic geodynamic settings and gold mineralization of the Russian Far East, Geol. Geofiz., 1999, vol. 40, no. 11, pp. 1635–1645.

    CAS  Google Scholar 

  35. Khanchuk, A.I., Golozubov, V.V., Martynov, Yu.A., and Simanenko, P.V., Early Cretaceous and Paleogene transformed continental margins (Californian type) of the Russian Far East, Tektonika Azii (Tectonics of Asia), Moscow: GEOS, 1997, pp. 240–243.

    Google Scholar 

  36. Kogiso, T., Tatsumi, Yo., and Nakano, S., Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts, Earth Planet. Sci. Lett., 1997, vol. 148, nos. 1–2, pp. 193–205. https://doi.org/10.1016/s0012-821x(97)00018-6

    Article  CAS  Google Scholar 

  37. Kotov, A.B., Larin, A.M., Sal’nikova, E.B., Velokoslavinskii, S.D., Glebovitskii, V.A., Sorokin, A.A., Yakovleva, S.Z., and Anisimova, I.V., Early Cretaceous collisional granitoids of the Drevnestanovoi complex from the Selenga-Stanovoi superterrane of the Central Asian mobile belt, Dokl. Earth Sci., 2014, vol. 456, no. 2, pp. 649–654. https://doi.org/10.1134/s1028334x14060154

    Article  CAS  Google Scholar 

  38. Kotov, A.B., Kovach, V.P., and Velikoslavinsky, S.D., Sm-Nd isotopic provinces and main crust-forming events in the north-eastern part of the Central Asian Orogenic Belt and adjacent terranes of the Siberian Craton: an overview, First China-Russia International Meeting on the Central Asian Orogenic Belt (Abstracts) Bei**g: Institute of Geology Chinese Academy of Geological Sciences, 2015, pp. 40–41.

  39. Kovalenko, V.I., Kozlovsky, A.M., and Yarmolyuk, V.V., Trace element ratios as indicators of source mixing and magma differentiation of alkali granitoids and basites of the Haldzan-Buregtey Massif and the Haldzan-Buregtey rare-metal deposit, Western Mongolia, Petrology, vol. 17, no. 2, pp. 158–177.

  40. Kramers, J.D. and Tolstikhin, I.N., Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust, Chem. Geol., 1997, vol. 139, nos. 1–4, pp. 75–110. https://doi.org/10.1016/s0009-2541(97)00027-2

    Article  CAS  Google Scholar 

  41. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations, Geochim. Cosmochim. Acta, 1973, vol. 37, no. 3, pp. 485–494. https://doi.org/10.1016/0016-7037(73)90213-5

    Article  CAS  Google Scholar 

  42. Krogh, T.E., Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique, Geochim. Cosmochim. Acta, 1982, vol. 46, no. 4, pp. 637–649. https://doi.org/10.1016/0016-7037(82)90165-x

    Article  CAS  Google Scholar 

  43. Kuznetsov, M.V., Savatenkov, V.M., Shpakovich, L.V., and Dr, Evolution of the magmatic sources of the Eastern Mongolian Volcanic Area: Evidence from geochemical and Sr–Nd–Pb isotope data, Petrology, 2022, vol. 30, no. 5, pp. 441–461. https://doi.org/10.1134/S0869591122050034

    Article  CAS  Google Scholar 

  44. Larin, A.M., Granity rapakivi i assotsiirovannye porody (Rapakivi Granites and Associated Rocks), St. Petersburg: Nauka, 2011.

  45. Larin, A.M., Kotov, A.B., Kovach, V.P., et al., Stages of continental crust cosolidation in central Dzhugdzhur–Stanovoy folded area (Sm-Nd chronology of granitoids), Russ. Geol. Geophys., 2002, vol. 43, no. 4, pp. 395–399.

    CAS  Google Scholar 

  46. Larin, A.M., Sal’nikova, E.B., Kotov, A.B., et al., Early Cretaceous age of regional metamorphism of the Stanovoi Group in the Dzhugdzhur–Stanovoi Foldbelt: Geodynamic implications, Dokl. Earth Sci., 2006, vol. 409, no. 5, pp. 727–731.

    Article  CAS  Google Scholar 

  47. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., and Dr, Geology of the Dzhugdzhur-Stanovoy orogenic area, Izotopnye sistemy i vremya geologicheskikh protsessov. Materialy IV Rossiiskoi konferentsii po izotopnoi geokhronologii (Isotope Systems and Timin of Geologcial Processes. Proc. 4th Conference on Isotope Geochronology), St. Petersburg: ChP Katalkina, 2009, vol. 1, pp. 306–309.

  48. Larin, A.M., Velikoslavinskii, S.D., Kotov, A.B., et al., Tectono-magmatic evolution of the Dzhugzhuro-Stanovoi and Selengino-Stanovoi superterraneins of the Central Asian fold belt, Voprosy geologii i kompleksnogo osvoeniya prirodnykh resursov Vostochnoi Azii (Problems of Geology and Complex Development of Resources of East Asia), Blagoveshchensk: IGiP DVO RAN, 2010, pp. 25–26.

  49. Larin, A.M., Kotov, A.B., Kovach, V.P., et al., Belt of granitic batholiths of the Olekmina and Pozdnestanovoy complexes of the Selenga-Stanovoy superterrane: age, geochemistry and tectonic setting, Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu): Materialy soveshchaniya (Geodynamic Evolution of Lithosphere of the Central Asian Lithospheric Belt: from Ocean to Continent), Irkutsk: IZK SO RAN, 2013, vol. 11, pp. 148–149.

    Google Scholar 

  50. Larin, A.M., Kotov, A.B., and Sal’nikova, E.B., Age and tectonic settings of granitoids of the Tynda–Bakaran Complex in the Uda–Zeya magmatic belt, Dokl. Earth Sci., 2014a, vol. 456, no. 1, pp. 539–544.

    Article  CAS  Google Scholar 

  51. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., Velikoslavinskii, S.D., Sorokin, A.A., Sorokin, A.P., Yakovleva, S.Z., and Anisimova, I.V., Granitoids of the Tukuringra complex in the Selenga-Stanovoi superterrane of the Central Asian mobile belt: Age and geodynamic setting, Dokl. Earth Sci., 2014b, vol. 457, no. 2, pp. 945–949. https://doi.org/10.1134/s1028334x14080224

    Article  CAS  Google Scholar 

  52. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., et al., Granitoids of the Pozdnestanovoy Complex of the Dzhugdzhur–Stanovoy Superterrane, Central Asia Fold Belt: Age, tectonic setting, and sources, Petrology, 2018a, vol. 26, no. 5, pp. 447–468. https://doi.org/10.1134/S0869591118050041

    Article  CAS  Google Scholar 

  53. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., and et, a., Age and tectonic settings of the Usugli depression volcanics and Dotulur alkalic granite (West Transbaikalia), Dokl. Earth Sci., 2018b, vol. 482, no. 2, pp. 1293–1297. https://doi.org/10.1134/S1028334X18100252

    Article  CAS  Google Scholar 

  54. Larin, A.M., Kotov, A.B., Salnikova, E.B., Sorokin, A.A., Kovach, V.P., and Podolskaya, M.M., Early Jurassic suprasubduction granitoids of the Uda Complex at the southwestern end of the Uda–Murgal Magmatic Arc: New data on the age and sources, Dokl. Earth Sci., 2020, vol. 492, no. 2, pp. 407–410. https://doi.org/10.1134/s1028334x20060100

    Article  CAS  Google Scholar 

  55. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., et al., Age and tectonic setting of granitoids of the Uda Complex of the Dzhugdzhur Block of the Stanovoy Suture: New data on the formation of giant magmatic belts in Eastern Asia, Dokl. Earth Sci., 2021, vol. 498, no. 1, pp. 362–366. https://doi.org/10.1134/S1028334X21050056

    Article  CAS  Google Scholar 

  56. Larin, A.M., Kotov, A.B., Sal’nikova, E.B., et al., The Stanovoy volcano-plutonic belt (Central Asian orogenic belt): age, tectonic position and sources, Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu): Materialy nauchnoi konferentsii (Geodynamic Evolution of Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent) Proc. Conf.,), Irkutsk: IZK SO RAN, 2022, vol. 20, pp. 161–163.

  57. Ludwig, K.R., PbDat for MS-DOS; a computer program for IBM-PC compatibles for processing raw Pb-U-Th isotope data, version 1.00a, U.S. Geol. Surv. Open-File Rept., 1991, vols. 88–542. https://doi.org/10.3133/ofr88542

  58. Ludwig, K.R., ISOPLOT for MS-DOS, a plotting and regression program for radiogenic-isotope data, for IBM-PC compatible computers, version 1.00, US Geol. Surv. Open-Fil Rept., 1988, vol. 62, nos. 88–557. https://doi.org/10.3133/ofr88557

  59. Ludwig, K.R., Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronol. Center Spec. Publ., 2003, vol. 4.

    Google Scholar 

  60. Manhes, G., Allegre, C.J., and Provost, A., U-Th-Pb systematics of the eucrite “Juvinas”: Precise age determination and evidence for exotic lead, Geochim. Cosmochim. Acta, 1984, vol. 48, no. 11, pp. 2247–2264. https://doi.org/10.1016/0016-7037(84)90221-7

    Article  CAS  Google Scholar 

  61. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, no. 5, pp. 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2

    Article  CAS  Google Scholar 

  62. Martin, H., Adakitic magmas: modern analogues of Archaean granitoids, Lithos, 1999, vol. 46, no. 3, pp. 411–429. https://doi.org/10.1016/s0024-4937(98)00076-0

    Article  CAS  Google Scholar 

  63. Martin, H., Smithies, R.H., Rapp, R., Moyen, J., and Champion, D., An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution, Lithos, 2005, vol. 79, nos. 1–2, pp. 1–24. https://doi.org/10.1016/j.lithos.2004.04.048

    Article  CAS  Google Scholar 

  64. Maxson, J. and Tikoff, B., Hit-and-run collision model for the Laramide orogeny, western United States, Geology, 1996, vol. 24, no. 11, p. 968. https://doi.org/10.1130/0091-7613(1996)024<0968:harcmf>2.3.co;2

    Article  Google Scholar 

  65. Melnikov, N.N., Errors of the Double Spiking Technique in the Isotopic Analysis of Common Lead, Geochem. Int., 2005, vol. 43, no. 12, pp. 1228–1234. https://doi.org/10.14256/jce.850.2013

    Article  Google Scholar 

  66. Meng, Q.R., What drove late Mesozoic extension of the northern China–Mongolia tract?, Tectonophysics, 2003, vol. 369, nos. 3–4, pp. 155–174. https://doi.org/10.1016/s0040-1951(03)00195-1

    Article  Google Scholar 

  67. Miller, D.M., Goldstein, S.L., and Langmuir, C.H., Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents, Nature, 1994, vol. 368, no. 6471, pp. 514–520. https://doi.org/10.1038/368514a0

    Article  CAS  Google Scholar 

  68. Natal’in, B.A., Mesozoic accretionary and collisional tectonics of the southern Far East of the USSR, Tikhookean. Geol., 1991, vol. 10, no. 5, pp. 3–23.

    Google Scholar 

  69. Neimark, L.A., Larin, A.M., Ovchinnikova, G.V., et al., U–Pb Geochronologic and Pb isotopic evidence for the Mesozoic mineralization stage of the Archean Stanovoi Megablock, Aldan–Stanovoi Shield, Petrology, 1996, vol. 4, no. 4, pp. 393–406.

    Google Scholar 

  70. Parfenov, L.M., Berzin, N.A., Khanchuk, A.I., et al., Model of orogenic belt formation in Central and Northeast Asia, Tikhookean. Geol., 2003, vol. 22, no. 6, pp. 7–41.

    Google Scholar 

  71. Pearce, J.A., Harris, N.B.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, no. 4, pp. 956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  CAS  Google Scholar 

  72. Poller, U., Liebetrau, V., and Todt, W., U-Pb single-zircon dating under cathodoluminescence control (CLC-method): application to polymetamorphic orthogneisses, Chem. Geol., 1997, vol. 139, nos. 1–4, pp. 287–297. https://doi.org/10.1016/s0009-2541(97)00040-5

    Article  CAS  Google Scholar 

  73. Richards, J.P. and Kerrich, R., Special Paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis, Econ. Geol., 2007, vol. 102, no. 4, pp. 537–576. https://doi.org/10.2113/gsecongeo.102.4.537

    Article  CAS  Google Scholar 

  74. Sakhno, V.G., Pozdnemezozoisko-kainozoiskii kontinental’nyi vulkanizm vostoka Azii (Late Mesozoic—Cenozoic Continental Volcanism of East Asia), Vladivostok: Dal’nauka, 2001, vol. 335.

  75. Sorokin, A.A., Sorokin, A.P., Ponomarchuk, V.A., and Travin, A.V., The age and geochemistry of volcanic rocks on the eastern flank of the Umlekan–Ogodzha volcanoplutonic belt (Amur region), Russ. Geol. Geophys., 2010, vol. 51, no. 4, pp. 369–379. https://doi.org/10.1016/j.rgg.2010.03.004

    Article  Google Scholar 

  76. Sorokin, A.A., Sorokin, A.P., Ponomarchuk, V.A., Martynov, Yu.A., Larin, A.M., and Travin, A.V., Late Mesozoic adakite volcanism of the Ugan volcanic structure (Southeastern Margin of the North Asian Craton): 40Ar/39Ar geochronological and geochemical evidence, Dokl. Earth Sci., 2012, vol. 445, no. 2, pp. 947–950. https://doi.org/10.1134/s1028334x12080089

    Article  CAS  Google Scholar 

  77. Sorokin, A.A., Sorokin, A.P., Ponomarchuk, V.A., et al., Late Mesozoic trachyandesite of the Bomnak volcanic structure (southeastern margin of the North Asian Craton): 40Ar/39Ar geochronological and geochemical data, Dokl. Earth Sci., 2013, vol. 451, no. 2, pp. 861–865.

    Article  CAS  Google Scholar 

  78. Sorokin, A.A., Kotov, A.B., Kovach, V.P., et al., Sources of the Late Mesozoic magmatic associations in the northeastern part of the Amurian microcontinent, Petrology, 2014a, vol. 22, no. 1, pp. 65–76.

    Article  CAS  Google Scholar 

  79. Sorokin, A.A., Ponomarchuk, V.A., Travin, A.V., Rogulina, L.I., and Ponomarchuk, A.V., Correlation between the ore formation processes in the Berezitovoe gold–complex-metal deposit (western part of the Selenga–Stanovoy superterrane) and the regional tectonomagmatic events, Russ. Geol. Geophys., 2014b, vol. 55, no. 3, pp. 335–348. https://doi.org/10.1016/j.rgg.2014.01.015

    Article  Google Scholar 

  80. Sorokin, A.A., Zaika, V.A., Kovach, V.P., Kotov, A.B., Xu, W., and Yang, H., Timing of closure of the eastern Mongol–Okhotsk Ocean: Constraints from U–Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect, Gondwana Res., 2020, vol. 81, pp. 58–78. https://doi.org/10.1016/j.gr.2019.11.009

    Article  CAS  Google Scholar 

  81. Smirnova, Yu.N., Sorokin, A.A., Popeko, L.I., et al., Geochemistry and provenances of the Jurassic terrigenous rocks of the Upper Amur and Zeya–Dep troughs, Eastern Central Asian Fold Belt, Geochem. Int., 2017, vol. 55, pp. 163–183.

    Article  CAS  Google Scholar 

  82. Sorokin, A.A., Zaika, V.A., Kadashnikova, A.Yu., Ponomarchuk, A.V., Travin, A.V., Ponomarchuk, V.A., and Buchko, I.V., Mesozoic thermal events and related gold mineralization in the eastern Mongol-Okhotsk Orogenic Belt: constraints from regional geology and 40Ar/39Ar dating, Int. Geol. Rev., 2023, vol. 65, no. 9, pp. 1476–1499. https://doi.org/10.1080/00206814.2022.2092781

    Article  Google Scholar 

  83. Stacey, J.S. and Kramers, J.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221. https://doi.org/10.1016/0012-821x(75)90088-6

    Article  CAS  Google Scholar 

  84. Steiger, R.H. and Jäger, E., Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 3, pp. 359–362. https://doi.org/10.1016/0012-821x(77)90060-7

    Article  Google Scholar 

  85. Strikha, V.E., Late Mesozoic collisional granitoids of the Upper Amur Area: new geochemical data, Geochem. Int., 2006, vol. 44, no. 8, pp. 791–807. https://doi.org/10.1134/S0016702906080040

    Article  Google Scholar 

  86. Strikha, V.E., Mesozoiskie granitoidy zolotonosnykh raionov Verkhnego Priamur’ya. Chast’ I. (Late Mesozoic Granitoids of Gold-Bearing Areas of the Upper Amur region. Part I), Blagoveshchensk: Amurskii gos. un-t, 2012, vol. 13.

  87. Sun, S.-s. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc., London, Special Publ., 1989, vol. 42, no. 1, pp. 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  88. Taylor, S.R. and Mclennan, S.M., The Continental Crust: Its Evolution and Composition, London: Blackwell, 1985.

    Google Scholar 

  89. Teyssier, C. and Tikoff, B., Strike-slip partitioned transpression of the San Andreas fault system: a lithospheric-scale approach, Geol. Soc., London, Special Publ., 1998, vol. 135, no. 1, pp. 143–158. https://doi.org/10.1144/gsl.sp.1998.135.01.10

    Article  Google Scholar 

  90. Timashkov, A.N., Shatova, N.V., Berezhnaya, N.G., et al., Geochronological studies of granitoids of the Stanovoy orogenic area, Regional. Geol. Metallogen., 2015, no. 61, pp. 35–49.

  91. Vakh, A.S., Avchenko, O.V., Goryachev, N.A., et al., New U–Pb isotopic data on the age of metamorphic and igneous rocks of the western margin of the Selenga–Stanovoi Orogenic Belt, Dokl. Earth Sci., 2013, vol. 450, no. 2, pp. 575–583. https://doi.org/10.1134/S1028334X1306007X

    Article  CAS  Google Scholar 

  92. Velikoslavinskii, S.D., Kotov, A.B., Krylov, D.P., and Larin, A.M., Determining the geodynamic setting of adakitic granitoids using geochemical data, Petrology, 2018, vol. 26, no. 3, pp. 255–264. https://doi.org/10.1134/S0869591118030062

    Article  CAS  Google Scholar 

  93. Wang, F., Zhou, X., Zhang, L., Ying, J., Zhang, Yu., Wu, F., and Zhu, R., Late Mesozoic volcanism in the Great **ng’an Range (NE China): Timing and implications for the dynamic setting of NE Asia, Earth Planet. Sci. Lett., 2006, vol. 251, nos. 1–2, pp. 179–198. https://doi.org/10.1016/j.epsl.2006.09.007

    Article  CAS  Google Scholar 

  94. Wang, T., Guo, L., Zhang, L., Yang, Q., Zhang, J., Tong, Yi., and Ye, K., Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings, J. Asian Earth Sci., 2015, vol. 97, pp. 365–392. https://doi.org/10.1016/j.jseaes.2014.10.005

    Article  Google Scholar 

  95. Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, no. 4, pp. 407–419. https://doi.org/10.1007/bf00402202

    Article  CAS  Google Scholar 

  96. **ao, L. and Clemens, J.D., Origin of potassic (C-type) adakite magmas: Experimental and field constraints, Lithos, 2007, vol. 95, nos. 3–4, pp. 399–414. https://doi.org/10.1016/j.lithos.2006.09.002

    Article  CAS  Google Scholar 

  97. Xu, B., Charvet, J., Chen, Ya., Zhao, P., and Shi, G., Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt, Gondwana Res., 2013, vol. 23, no. 4, pp. 1342–1364. https://doi.org/10.1016/j.gr.2012.05.015

    Article  Google Scholar 

  98. Yarmolyuk, V.V., Ivanov, V.G., and Kovalenko, V.I., Sources of Intraplate Magmatism of Western Transbaikalia in the Late Mesozoic-Cenozoic: trace-element and isotope data, Petrology, 1998, vol. 6, no. 2, pp. 101–123.

    Google Scholar 

  99. Yarmolyuk. V.V., Kudryashova, E.A., Kozlovsky, A.M., and Savatenkov, V.M., Late Cenozoic volcanic province in Central and East Asia, Petrology, vol. 19. no. 4, pp. 327–347.

  100. Yarmolyuk, V.V., Nikiforov, A.V., Kozlovsky, A.M., and Kudryashova, E.A., Late Mesozoic East Asian magmatic province: structure, magmatic signature, formation conditions, Geotectonics, 2019, vol. 53, no. 4, pp. 500–516. https://doi.org/10.1134/S0016852119040071

    Article  Google Scholar 

  101. Zaika, V.A., Sorokin, A.A., Kovach, V.P., and Kotov, A.B., Geochemistry of metasedimentary rocks, sources of clastic material, and tectonic nature of Mesozoic basins on the northern framing of the Eastern Mongol–Okhotsk Orogenic Belt, Russ. Geol. Geophys., 2020, vol. 61, no. 3, pp. 286–302. https://doi.org/10.15372/RGG2019095

    Article  Google Scholar 

  102. Zonenshain, L.P., Kuzmin, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithospheric Plates of the USSR), Moscow: Nedra, 1990.

Download references

ACKNOWLEDGMENTS

We are grateful to reviewers V.V. Yarmolyuk and T.V. Donskaya for valuable advices and constructive comments, which significantly improved the manuscript. We also thank A.A. Sorokin for generous help in the organization and performance of field works in the Amur region and fruitful discussion of magmatic and tectonic problems of East Asia.

Funding

The study was supported by the Russian Science Foundation (project no. 22-27-00191, https://rscf.ru/project/22-27-00191/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Larin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, A.M., Kotov, A.B., Sal’nikova, E.B. et al. Amudzhikan Volcano-Plutonic Association of the Eastern Part of the West-Stanovoy Superterrane (Central Asian Orogenic Belt): Age, Sources, and Tectonic Setting. Petrology 32, 502–533 (2024). https://doi.org/10.1134/S0869591124700103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591124700103

Keywords:

Navigation