Log in

Sr- and C-Chemostratigraphy Potential of the Paleoproterozoic Sedimentary Carbonates under Medium-Temperature Metamorphism: the Ruskeala Marble, Karelia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Comprehensive petrological and isotope-geochemical study of marble was carried out in the upper part of the Sortavala Group of the northeastern lense at the Ruskeala deposit in the Northern Ladoga area. The petrological study showed that the carbonate rocks of the Sortavala Group underwent medium-temperature low-pressure amphibolite-facies metamorphism. The mineral assemblages of Ruskeala marbles were formed at temperature of 550–600°C and pressure of ~3–5 kbar in equilibrium with a mixed water-carbon dioxide fluid with \({{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) ~ 0.5–0.8. Dolomite marbles contain admixture (up to 2%) of finely disseminated carbonaceous matter and about 8–15% of calcite. Dolomites contain small amounts of Mn (70–110 ppm) and Fe (1600–3600 ppm) and high content of Sr (122–256 ppm). The initial 87Sr/86Sr ratio in the dolomites is within 0.70465–0.70522, δ13C values vary between +0.6…+1.9 ‰, and δ18О within –13.2 … –10.2‰ (V-PDB). Calcite marbles are free of carbonaceous matter, have very low contents of Mg (0.2–0.8%), Mn (10–90 ppm) and Fe (160–640 ppm) and very high Sr concentration (850–2750 ppm). The initial 87Sr/86Sr ratios in the calcite marbles range from 0.70482 to 0.70489, δ13С from 1.5 to 2.1‰, and δ18О from –10.9 to ‒8.1 ‰ (V-PDB). Tremolite-bearing marbles have higher 87Sr/86Sr ratio (up to 0.70522), while their δ13С and δ18О values decrease to 0.1‰ and –12.2‰, respectively. The metamorphism of Ruskeala carbonate even under medium-temperature amphibolite-facies conditions was essentially isochemical process, which retained the unique Sr and C chemostratigraphic potential of calcite and dolomite marbles for the reconstruction of 87Sr/86Sr and δ13C in the Paleoproterozoic seawater. The 87Sr/86Sr ratio in the 1.9–2.0 Ga Svecofennian ocean was 0.70463–0.70492, and δ13С value +1.5 ± 1‰. New Sr-isotope data record an increase in radiogenic Sr input in the ocean about 2 billion years ago, which was probably related to the growth of continental crust and more intense weathering. The δ13С in Ludicovian carbonates mark the beginning of C-isotope stasis in ocean after the Lomagundi-Jatulian anomaly of 13Ccarb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Baker, A.J. and Fallick, A.E., Evidence for CO2 infiltration in granulite-facies marbles from Lofoten–Vesteralen, Norway, Earth Planet. Sci. Lett., 1988, vol. 91, nos. 1–2, pp. 132–140.

    Article  Google Scholar 

  2. Baker, J., Holland, T., and Powell, R., Isograds in internally buffered systems without solid solutions: principles and examples, Contrib. Mineral. Petrol., 1991, vol. 106, no. 2, pp. 170–182.

    Article  Google Scholar 

  3. Baltybaev, Sh.K., Levchenkov, O.A., and Levsk, L.K., Svekofennskii poyas Fennoskandii: prostranstvenno-vremennaya korrelyatsiya ranneproterozoiskikh endogennykh protsessov (Svecofennian Belt of Fennoscandin: Spatiotemporal Correlation of Paleoproterozoic Endogenous Processes), St. Petersburg: Nauka, 2009.

  4. Banner, J.L. and Hanson, G.N., Calculation of simultaneous isotopic and trace element variations during water–rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Acta, 1990, vol. 54, no. 11, pp. 3123–3137.

    Article  Google Scholar 

  5. Bekker, A., Karhu, J.A., Eriksson, K.A., and Kaufman, A.J., Chemostratigraphy of the Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change?, Precambrian Res., 2003a, vol. 120, nos. 3–4, pp. 279–325.

    Article  Google Scholar 

  6. Bekker, A., Sial, A.N., Karhu, J.A., et al., Chemostratigraphy of carbonates from Minas Supergroup, Quadrilatero Ferifero (iron quadrangle), Brazil: a stratigraphic record of Early Proterozoic atmospheric, biogeochemical and climatic change, Am. J. Sci., 2003b, vol. 330, no. 10, pp. 865–904.

    Article  Google Scholar 

  7. Bekker, A., Holland, H.D., Wang, P.-L., et al., Dating the rise of atmospheric oxygen, Nature, 2004, vol. 427, pp. 117–120.

    Article  Google Scholar 

  8. Berman, R.G., Internally–consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, no. 2, pp. 445–522.

    Article  Google Scholar 

  9. Berman, R.G., WinTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations, Geol. Surv. Canada, 2007.

    Google Scholar 

  10. Bolhar, R., Hofmann, A., Woodhead, J., et al., Pb- and Nd-isotope systematics of stromatolitic limestones from the 2.7 Ga Ngezi Group of the Belingwe greenstone belt: constraints on timing of deposition and provenance, Precambrian Res., 2002, vol. 114, nos. 3–4, pp. 277–294.

    Article  Google Scholar 

  11. Boulvais, P., Fourcade, S., Gruau, G., et al., Persistence of pre-metamorphic c and o isotopic signatures in marbles subject to Pan-African granulite-facies metamorphism and U-Th mineralization (Tranomaro, southeast Madagascar), Chem. Geol., 1998, vol. 150, pp. 247–262.

    Article  Google Scholar 

  12. Bucher, K. and Frey, M., Petrogenesis of Metamorphic Rocks, Berlin–Heidelberg: Springer–Verlag, 1994.

    Book  Google Scholar 

  13. Bushmin, S.A. and Glebovitsky, V.A., Scheme of mineral facies of metamorphic rocks and its application to Fennoscandian shield with representative sites of orogenic gold mineralization, Trans. Karelian Res. Centre RAS. Precambrian Geol. Ser., 2016, no. 2, pp. 3–27.

  14. Bushmin, S.A., E.A. Vapnik, M.V. Ivanov, Yu.M. Lebedeva, and E.V. Savva, Fluids in high–pressure granulites, Petrology, 2020, vol. 28, no. 1, pp. 1–16.

    Article  Google Scholar 

  15. Carmichael, D.M., Univariant mixed-volatile reactions; pressure–temperature phase diagrams and reaction isograds, Can. Mineral., 1991, vol. 29, no. 4, pp. 741–754.

    Google Scholar 

  16. Connolly, C.A., Walter, L.M., Baadsgaard, H., and Longstaffe, F.J., Origin and evolution of formation waters, Alberta Basin, Western Canada sedimentary basin. II. Isotope systematics and water mixing, Appl. Geochem., 1990, vol. 5, pp. 397–413.

    Article  Google Scholar 

  17. Connolly, J.A.D. and Trommsdorff, V., Petrogenetic grids for metacarbonate rocks: pressure–temperature phase-diagram projection for mixed-volatile systems, Contrib. Mineral. Petrol., 1991, vol. 108, nos. 1–2, pp. 93–105.

    Article  Google Scholar 

  18. Demidov, N.F. and Kratts, K.O., Rhythmic properties of the Ladoga schist sequence in Southwestern Karelia, Izv. Karel’sk. Kol’sk. Fil. AN SSSR, 1958, no. 5, pp. 3–9.

  19. Dubinina, E.O., Chugaev, A.V., Ikonnikova, T.A., et al., Sources and fluid regime of quartz–carbonate veins at the Sukhoi Log gold deposit, Baikal–Patom Highland, Petrology, 2014, vol. 22, no. 4, pp. 329–358.

    Article  Google Scholar 

  20. Dubinina, E.O., Kramchaninov, A.Yu., Silantyev, S.A., and Bortnikov, N.S., Influence of the precipitation rate on the isotope (δ18O, δ13C and δ88Sr) composition of carbonate chimneys of the Lost City hydrothermal field (30° N, Mid–Atlantic Ridge), Petrology, 2020, vol. 28, no. 4, pp. 374–388.

    Article  Google Scholar 

  21. Dufour, M.S., Kol’tsov, A.B., Zolotarev, A.A., and Kuznetsov, A.B., Corundum-bearing metasomatic rocks in the Central Pamirs, Petrology, 2007, vol. 15, no. 2, pp. 151–167.

    Article  Google Scholar 

  22. Eggert, R.G. and Kerrick, D.M., Metamorphic equilibria in the siliceous dolomite system: 6 kbar experimental data and geologic implications, Geochim. Cosmochim. Acta, 1981, vol. 45, no. 7, pp. 1039–1049.

    Article  Google Scholar 

  23. Farquhar, J., Zerkle, A.L., and Bekker, A., Geological constraints on the origin of oxygenic photosynthesis, Photosynth. Res., 2011, vol. 107, no. 1, pp. 11–36.

    Article  Google Scholar 

  24. Faure, G., Principles of Isotope Geology, 2nd ed, New York: Wiley and Sons, 1986.

    Google Scholar 

  25. Flowers, G.C. and Helgeson, H.C., Equilibrium and mass transfer during progressive metamorphism of siliceous dolomites, Am. J. Sci., 1983, vol. 283, no. 3, pp. 230–286.

    Article  Google Scholar 

  26. Frauenstein, F., Veizer, J., Beukes, N., et al., Transvaal Supergroup carbonates: implications for paleoproterozoic δ18O and δ13C records, Precambrian Res., 2009, vol. 175, nos. 1/4, pp. 149–160.

    Article  Google Scholar 

  27. Frimmel, H.E., On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation, Precambrian Res., 2010, vol. 182, no. 4, pp. 239–253.

    Article  Google Scholar 

  28. Galimov, E.M., Migdisov, A.A., and Ronov, A.B., Isotope variations of carbonate and organic carbon in sedimentary rocks in the Earth’s evolution, Geokhimiya, 1975, no. 3, pp. 323–342.

  29. Gast, P.W., Abundance of 87Sr during geologic time, Geol. Soc. Am. Bull., 1955, vol. 66, no. 11, pp. 1149–1453.

    Article  Google Scholar 

  30. Geologiya i petrologiya svekofennid Priladozh’ya (Geology and Petrology of Svecofennides of the Ladoga Area), Glebovitskii, V.A., Eds., St. Petersburg: St. Petersburg. Univ., 2000.

    Google Scholar 

  31. Gerling, E.K. and Shukolyukov, Yu.A., Determination of absolute age from 87Sr/86Sr ratio in sedimentary rocks, Geokhimiya, 1957, no. 3, pp. 187–190.

  32. Ghent, E.D. and O’Neil, J.R., Late Precambrian marbles of unusual carbon–isotope composition, southeastern British Columbia, Can. J. Earth Sci., 1985, vol. 22, no. 3, pp. 324–329.

    Article  Google Scholar 

  33. Gorokhov, I.M., Varshavskaya, E.S., Kutyavin, E.P., and Lobach–Zhuchenko, S.B., Preliminary Rb–Dr geochronology of the North Ladoga region, Soviet Karelia, Eclogae Geol. Helv, 1970, vol. 63, no. 1, pp. 95–104.

    Google Scholar 

  34. Gorokhov, I.M., Semikhatov, M.A., Baskakov, A.V., et al., Strontium isotope composition of Riphean, Vendian, and Lower Cambrian carbonate rocks of Siberia, Stratigraphy. Geol. Correlation, 1995, vol. 3, no. 1, 3–33.

    Google Scholar 

  35. Gorokhov, I.M., Kuznetsov, A.B., Melezhik, V.A., et al., Sr isotopic composition in the Upper Jatulian (Early Paleoproterozoic) dolomites of the Tulomozero Formation, Southeastern Karelia, Dokl. Earth Sci., 1998, vol. 360, no. 4, pp. 609–612.

    Google Scholar 

  36. Gorokhov, I.M., Kuznetsov, A.B., Ovchinnikova, G.V., et al., Pb-Sr–O–C isotope compositions of metacarbonate rocks of the Derbina Formation (East Sayan): chemostratigraphic and geochronological significance, Stratigraphy. Geol. Correlation, 2016, vol. 24, no. 1, pp. 1–18.

    Article  Google Scholar 

  37. Gorokhov, I.M., Kuznetsov, A.B., Konstantinova, G.V., et al., Carbonate rocks from the Riphean–Vendian boundary deposits of the Anabar Uplift: isotope (87Sr/86Sr, δ13C, δ18O) systematics and chemostratigraphic consequences, Dokl. Earth Sci., 2018, vol. 482, no. 2, pp. 1306–1310.

    Article  Google Scholar 

  38. Gorokhov, I.M., Kuznetsov, A.B., Semikhatov, M.A., et al., Early Riphean Billyakh Group of the Anabar Uplift, North Siberia: C–O isotopic geochemistry and Pb-Pb age of dolomites, Stratigraphy. Geol. Correlation, 2019, vol. 27, no. 5, pp. 514–528.

    Article  Google Scholar 

  39. Ivanov, M.V. and Bushmin, S.A., Thermodynamic model of the H2O–CO2–NaCl fluid system at middle and lower crustal P–T parameters, Petrology, 2021, vol. 29, no. 1, pp. 90–103.

  40. Karhu, J.A., Paleoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian shield, Geol. Sur. Finland Bull., 1993, no. 371, pp. 1–87.

  41. Kerrick, D.M., Review of metamorphic mixed-volatile (H2O–CO2) equilibria, Am. Mineral., 1974, vol. 59, nos. 7–8, pp. 729–762.

    Google Scholar 

  42. Khabarov, E.M., and Varaksina, I.V., The structure and depositional environments of Mesoproterozoic petroliferous carbonate complexes in the western Siberian craton, Russ. Geol. Geophys., 2001, vol. 52, no. 8, pp. 923–944.

    Article  Google Scholar 

  43. Kitchen, N.E. and Valley, J.W., Carbon isotopic thermometry in marbles of the Adirondack mountains, New York, J. Metamorph. Geol., 1995, vol. 13, no. 5, pp. 577–594.

    Article  Google Scholar 

  44. Kitsul, V.I., Petrologiya karbonatnykh porod ladozhskoi formatsii (Petrology of Carbonate Rocks of the Ladoga Formation), Moscow: AN SSSR, 1963.

    Google Scholar 

  45. Kratts, K.O., Geologiya karelid Karelii (Geology of the Karelian Karelides), Moscow–Leningrad: AN SSSR, 1963.

    Google Scholar 

  46. Kretz, R., Symbols of rock–forming minerals, Am. Mineral., 1983, vol. 68, nos. 1–2, pp. 277–279.

    Google Scholar 

  47. Kuznetsov, A.B., Melezhik, V.A., Gorokhov, I.M., et al., Sr isotope composition in Paleoproterozoic carbonates extremely enriched in 13C: Kaniapiskau Supergroup, the Labrador Trough of the Canadian Shield, Stratigraphy. Geol. Correlation, 2003, vol. 11, no. 3, pp. 209–219.

    Google Scholar 

  48. Kuznetsov, A.B., Semikhatov, M.A., Maslov, A.V., et al., New data on Sr- and C-isotopic chemostratigraphy of the Upper Riphean type section (Southern Urals), Stratigraphy. Geol. Correlation, 2006, vol. 14, no. 6, pp. 602–628.

    Article  Google Scholar 

  49. Kuznetsov, A.B., Melezhik, V.A., Gorokhov, I.M., et al., Sr isotopic composition of Paleoproterozoic 13C–rich carbonate rocks: the Tulomozero Formation, SE Fennoscandian Shield, Precambrian Res., 2010, vol. 182, no. 4, pp. 300–312.

    Article  Google Scholar 

  50. Kuznetsov A.B., Gorokhov I.M., Ovchinnikova G.V., et al., Rb-Sr and U-Pb systematics of metasedimentary carbonate rocks: the Paleoproterozoic Kuetsjarvi Formation of the Pechenga greenstone belt, Kola Peninsula, Lithol. Miner. Resour., 2011, vol. 46, no. 2, pp. 151–164.

    Article  Google Scholar 

  51. Kuznetsov, A.B., Gorokhov, I.M., Melezhik, V.A., et al. Strontium isotope composition of the Lower Proterozoic carbonate concretions: the Zaonega Formation, Southeast Karelia, Lithol. Miner. Resour., 2012, vol. 45, no. 4, pp. 319–333.

    Article  Google Scholar 

  52. Kuznetsov, A.B., Gorokhov, I.M., and Melezhik, V.A., Sr isotopes in sedimentary carbonates, Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia—Drilling Early Earth Project, Melezhik, V.A., Kump, L.R., Fallick, A.E., et al., Eds., Heidelberg: Springer, 2013, pp. 1459–1467. https://doi.org/10.1007/978-3-642-29670-3

  53. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian), Stratigraphy. Geol. Correlation, 2014, vol. 22, no. 6, pp. 553–575.

    Article  Google Scholar 

  54. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., Strontium isotope stratigraphy: principles and state of the art, Stratigraphy. Geol. Correlation, 2018, vol. 26, no. 4, pp. 367–386.

    Article  Google Scholar 

  55. Kuznetsov, A.B., Lobach–Zhuchenko, S.B., Kaulina, T.V., and Konstantinova, G.V., Paleoproterozoic age of carbonates and trondhjemites of the Central Azov Group: Sr isotope chemostratigraphy and U–Pb geochronology, Dokl. Earth Sci., 2019, vol. 484, no. 2, pp. 142–145.

    Article  Google Scholar 

  56. Luttge, A., Bolton, E.W., and Rye, D.M., A kinetic model of metamorphism: an application to siliceous dolomites, Contrib. Mineral. Petrol., 2004, vol. 146, no. 5, pp. 546–565.

    Article  Google Scholar 

  57. Maheshwari, A., Sial, A.N., Gaucher, C., et al., Global nature of the paleoproterozoic lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay, Precambrian Res., 2010, vol. 182, no. 4, pp. 274–299.

    Article  Google Scholar 

  58. Masch, L. and Heuss-Assbichler, S., Decarbonation reactions in siliceous dolomites and impure limestones, Equilibrium and Kinetics in Contact Metamorphism, Voll, G., Töpel, J., Pattison, D.R.M., and Seifen. F., Eds., Berlin–Heidelberg: Springer-Verlag, 1991.

  59. Mason, R., Petrology of the Metamorphic Rocks, London: Unwin Hyman, 1990, p. 2.

    Google Scholar 

  60. Matrenichev, A.V. and Matrenichev, V.A., Petrology of the Ludicovian volcanism of the Onega structure and Raahe–Ladoga zone. Baltic Shield. Sb. IGGD RAN (A Collection of Papers of the Institute of Precambrian Geology and Geochronology, RAS) Abushkevich, V.S, Alfimova, N.A, Eds., St. Petersburg: Politekhn. Univ., 2010, pp. 223–255.

  61. Melezhik, V.A. and Fallick, A.E., A widespread positive δ13Ccarb anomaly at around 2.33–2.06 Ga on the Fennoscandian shield: a paradox?, Terra Nova, 1996, vol. 8, no. 2, pp. 141–157.

    Article  Google Scholar 

  62. Melezhik, V.A., Roberts, D., Gorokhov, I.M., et al., Isotopic evidence for a complex Neoproterozoic to Silurian rock assemblage in the north-central Norwegian Caledonides, Precambrian Res., 2002, vol. 114, nos. 1/2, pp. 55–86.

    Article  Google Scholar 

  63. Melezhik, V.A., Zwaan, B.K., Motuza, G., et al., New insights into the geology of high-grade Caledonian marbles based on isotope chemostratigraphy, Norwegian J. Geol., 2003, vol. 83, pp. 209–242.

    Google Scholar 

  64. Melezhik, V.A., Fallick, A.E., and Kuznetsov, A.B., Palaeoproterozoic, rift-related, 13C-rich, lacustrine carbonates, NW Russia. Part II: global isotopic signal recorded in the lacustrine dolostone, Trans. R. Soc. Edinburgh Earth Sci., 2004, vol. 95, nos. 3/4, pp. 423–444.

    Article  Google Scholar 

  65. Melezhik, V.A., Roberts, D., Fallick, A.E., et al., Geochemical preservation potential of high–grade calcite marble versus dolomite marble: implication for isotope chemostratigraphy, Chem. Geol., 2005, vol. 216, nos. 3–4, pp. 203–224.

    Article  Google Scholar 

  66. Melezhik, V.A., Kuznetsov, A.B., Fallick, A.E., et al., Depositional environments and an apparent age for the Geci meta-limestones: constraints on geological history of northern Mozambique, Precambrian Res., 2006, vol. 148, nos. 1/2, pp. 19–31.

    Article  Google Scholar 

  67. Melezhik, V.A., Huhma, H., Condon, D.J., et al., Temporal constraints on the Paleoproterozoic Lomagundi–Jatuli carbon isotopic event, Geology, 2007, vol. 35, no. 7, pp. 655–658.

    Article  Google Scholar 

  68. Melezhik, V.A., Pokrovsky, B.G., Fallick, A.E., et al., Constraints on 87Sr/86Sr of late Ediacaran seawater: insights from Siberian high-Sr limestones, J. Geol. Soc. London, 2009, vol. 166, pp. 183–191.

    Article  Google Scholar 

  69. Melezhik, V.A., Fallick, A.E., Martin, A.P., et al., The Palaeoproterozoic perturbation of the global carbon cycle: the Lomagundi–Jatuli isotopic event, Reading the Archive of Earth’s Oxygenation. Global Events and the Fennoscandian Arctic Russia, Drilling Early Earth Project (FAR–DEEP), Berlin–Heidelberg: Springer-Verlag, 2013a, vol. 3, pp. 1111–1150.

    Google Scholar 

  70. Melezhik, V.A., Roberts, D., Gjelle, S., et al., Isotope chemostratigraphy of high-grade marbles in the Rognan area, north-central Norwegian Caledonides: a new geological map, and tectonostratigraphic and palaeogeographic implications, Norwegian J. Geol., 2013b, vol. 93, no. 3, pp. 107–150.

    Google Scholar 

  71. Melezhik, V.A., Ihlen, P.M., Kuznetsov, A.B., et al., Pre-Sturtian (800–730 Ma) depositional age of carbonates in sedimentary sequences hosting stratiform iron ores in the uppermost allochthon of the Norwegian Caledonides: a chemostratigraphic approach, Precambrian Res., 2015, vol. 261, pp. 272–299.

    Article  Google Scholar 

  72. Metz, P. and Trommsdorff, V., On phase equilibria in metamorphosed siliceous dolomites, Contrib. Mineral. Petrol., 1968, vol. 18, no. 4, pp. 305–309.

    Article  Google Scholar 

  73. Metzger, A.A.Th., Die kalksteinlagerstatten von Ruskeala in Ostfinnland, Bull. Comm. Geol. Finlande, 1925, no. 74.

  74. Moore, C.H., Carbonate Diagenesis and Porosity. Developments in Sedimentology, Amsterdam: Elsevier, 1989, vol. 46.

    Google Scholar 

  75. Ovchinnikova, G.V., Kuznetsov, A.B., Melezhik, V.A., et al., Pb–Pb age of Jatulian carbonate rocks: The Tulomozero Formation of southeast Karelia, Stratigraphy. Geol. Correlation, 2007, vol. 15, no. 4, pp. 359–372.

    Article  Google Scholar 

  76. Podkovyrov, V.N., Semikhatov, M.A., Kuznetsov, A.B., et al. Carbonate carbon isotopic composition in the Upper Riphean stratotype, the Karatau Group, Southern Urals, Stratigraphy. Geol. Correlation, 1998, vol. 6, no. 4, pp. 319–335.

    Google Scholar 

  77. Pokrovsky, B.G. and Vinogradov, V.I., Strontiu, oxygen, and carbon isotope composition of the Upper Precambrian carbonates of the western slope of the Anabar Uplift (Kotuikan River), Dokl. AN SSSR, 1991, vol. 320, no. 5, pp. 1245–1250.

    Google Scholar 

  78. Pokrovsky, B.G., Melezhik, V.A., and Buyakaite, M.I., Carbon, Oxygen, Strontium, and Sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 2. Nature of carbonates with ultralow and ultrahigh δ13C values, Lithol. Miner. Resour., 2006, vol. 41, no. 5, pp. 576–587.

    Article  Google Scholar 

  79. Pokrovsky, B.G., Buyakaite, M.I., and Kokin, O.V., Geochemistry of C, O, and Sr isotopes and chemostratigraphy of Neoproterozoic rocks in the northern Yenisei Ridge, Lithol. Miner. Resour., 2012, vol. 47, no. 2, pp. 177–200.

    Article  Google Scholar 

  80. Puchtel, I.S., Arndt, N.T., Hofmann, A.W., et al., Petrology of mafic lavas within the Onega Plateau, Central Karelia: evidence for 2.0 Ga plume-related continental crustal growth in the Baltic Shield, Contrib. Mineral. Petrol., 1998, vol. 130, no. 2, pp. 134–153.

    Article  Google Scholar 

  81. Puchtel, I.S., Brügmann, G.E., and Hofmann, A.W., Precise Re-Os mineral isochron and Pb-Nd-Os isotope systematics of a mafic–ultramafic sill in the 2.0 Ga Onega Plateau (Baltic Shield), Earth Planet. Sci. Lett., 1999, vol. 170, no. 4, pp. 447–461.

    Article  Google Scholar 

  82. Ray, J.S., Veizer, J., and Davis, W.J., C, O, Sr, and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events, Precambrian Res., 2003, vol. 121, nos. 1/2, pp. 103–140.

    Article  Google Scholar 

  83. Satish-Kumar, M., Miyamoto, T., Hermann, J., et al., Pre–metamorphic carbon, oxygen and strontium isotope signature of high-grade marbles from the Lutzow–Holm Complex, East Antarctica: apparent age constraints of carbonate deposition, Geol. Soc. Spec. Publ. London, 2008, vol. 308, pp. 147–164.

    Article  Google Scholar 

  84. Schidlowski, M., Eichmann, R., and Junge, C.E., Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia, Geochim. Cosmochim. Acta, 1976, vol. 40, no. 4, pp. 449–455.

    Article  Google Scholar 

  85. Scholle, P.A. and Arthur, M.A., Carbon isotopic fluctuations in cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool, Amer. Assoc. Petrol. Geol. Bull., 1980, vol. 64, pp. 67–87.

    Google Scholar 

  86. Semikhatov, M.A., Kuznetsov, A.B., Podkovyrov, V.N., et al., The Yudoma Group of stratotype area: C–isotope chemostratigraphic correlations and Yudomian–Vendian relation, Stratigraphy. Geol. Correlation, 2004, vol. 12, no. 5, pp. 435–459.

    Google Scholar 

  87. Semikhatov, M.A., Kuznetsov, A.B., Maslov, A.V., et al. Stratotype of the Lower Riphean, the Burzyan Group of the Southern Urals: lithostratigraphy, paleontology, geochronology, Sr– and C–isotopic characteristics of its carbonate rocks, Stratigraphy. Geol. Correlation, 2009, vol. 17, no. 6, pp. 574–601.

    Article  Google Scholar 

  88. Shuldiner, V.I., Kozyreva, I.V., and Baltybaev, Sh.K., Geochronology and formation subdivisions of the Lower Precambrian in the northwestern Ladoga Region, Stratigraphy. Geol. Correlation, 1996, vol. 4, no. 3, pp. 220–230.

    Google Scholar 

  89. Sial, A.N., Gaucher, C., Ramkumar, M., and Ferreira, V.P., Chemostratigraphy as a formal stratigraphic method, Chemostratigraphy across Major Chronological Boundaries, American Geophys. Union. Geophys. Monogr., 2019, vol. 240, pp. 3–25.

    Google Scholar 

  90. Sokolov, V.A. and Galdobina, L.P., Ludicovian as a new stratigraphic subdivision of the Paleoproterozoic, Dokl. AN SSSR, 1982, vol. 267, no. 1, pp. 187–190.

    Google Scholar 

  91. Spooner, E.T.C., The strontium isotopic composition of seawater, and seawater–oceanic crust interaction, Earth Planet. Sci. Lett., 1976, vol. 31, no. 1, pp. 167–174.

    Article  Google Scholar 

  92. Stratigrafiya dokembriya KASSR (arkhei, nizhnii proterozoi) (Precambrian Stratigraphy of the Karelian ASSR (Archean, Paleoproterozoic), Petrozavodsk: KFAN SSSR, 1984.

  93. Svetov, A.P. and Sviridenko, L.P., Stratigrafiya dokembriya Karelii. Sortaval’skaya seriya svekokarelid Priladozh’ya (Precambrian Stratigraphy of Karelia. Sortavala Group of the Svecokarelides of the Ladoga Region), Petrozavodsk: Karel’skii nauchnyi tsentr, 1992. 152 s.

  94. Trommsdorff, V. and Evans, B.W., Antigorite–ophicarbonates: phase relations in a portion of the system CaO–MgO–SiO2–H2O–CO2, Contrib. Mineral. Petrol., 1977, vol. 60, no. 1, pp. 39–56.

    Article  Google Scholar 

  95. Trommsdorff, V. and Connolly, J.A.D., Constraints on phase diagram topology for the system CaO–MgO–SiO2–CO2–H2O, Contrib. Mineral. Petrol., 1990, vol. 104, no. 1, pp. 1–7.

    Article  Google Scholar 

  96. Valley, J.W., Stable isotope geochemistry of metamorphic rocks, Stable isotopes in High Temperature Geological Processes, Valley, J.W. Taylor, H.P. O’Neil. J.R., Eds., Rev. Mineral. Geochem. Mineral. Soc. Am., 1986, vol. 16, pp. 445–490.

  97. Veizer, J. and Compston, W., 87Sr/86Sr in Precambrian carbonates as an index of crustal evolution, Geochim. Cosmochim. Acta, 1976, vol. 40, no. 8, pp. 905–914.

    Article  Google Scholar 

  98. Veizer, J. and Hoefs, J., The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks, Geochim. Cosmochim. Acta, 1976, vol. 40, no. 11, pp. 1387–1395.

    Article  Google Scholar 

  99. Veizer, J., Holser, W.T., and Wilgus, C.K., Correlation of 13C/12C and 34S/32S secular variations, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 579–587.

    Article  Google Scholar 

  100. Veizer, J., Clayton, R.N., and Hinton, R.W., Geochemistry of Precambrian carbonates: 3–shelf seas and non–marine environments of the Archean, Geochim. Cosmochim. Acta, 1990, vol. 54, no. 10, pp. 2717–2729.

    Article  Google Scholar 

  101. Walter, M.R., Veeres, J.J., Calver, C.R., et al., Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon and sulfur in seawater and some interpretative models, Precambrian Res., 2000, vol. 100, no. 1, pp. 371–433.

    Article  Google Scholar 

  102. Wickman, F.E., Isotope ratios – a clue to the age of certain marine sediments, J. Geol., 1948, vol. 56, no. 1, pp. 61–66.

    Article  Google Scholar 

  103. Winkler, H.G.F., Petrogenesis of Metamorphic Rocks, New York: Springer-Verlag, 5th ed, 1979.

    Book  Google Scholar 

  104. Yudovich, Ya.E., Makarikhin, V.V., Medvedev, P.V., and Sukhanov, N.V., Carbon isotope anomalies in carbonates of the Karelian Complex, Geokhimiya, 1990, no. 7, pp. 972–978.

Download references

ACKNOWLEDGMENTS

We are grateful to B.G. Pokrovsky for valuable comments that significantly improved the manuscript.

Funding

This work was supported by the Russian Science Foundation (Geochemistry and Sr isotopes in Carbonate Rocks, RSF no. 18-17-00247). Petrological study was carried out in the framework of the State Task (NIR no. 0132-2019-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kuznetsov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.B., Gorokhov, I.M., Azimov, P.Y. et al. Sr- and C-Chemostratigraphy Potential of the Paleoproterozoic Sedimentary Carbonates under Medium-Temperature Metamorphism: the Ruskeala Marble, Karelia. Petrology 29, 175–194 (2021). https://doi.org/10.1134/S0869591121010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121010033

Keywords:

Navigation