Log in

Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immiscibility in magmatic systems

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper focuses on reasons for the appearance of tetrad effects in chondrite-normalized REE distribution patterns of granitoids (Li-F granites, peralklaine granites, ongonites, fluorine-rich rhyolites, and granitic pegmatites). The analysis of published data showed that the alteration of such rocks by high- and/or low-temperature metasomatic processes does not result in most cases in the appearance or enhancement of M-type tetrad effects in REE patterns. These processes are accompanied by the removal or addition of lanthanides, a W-type sag appears between Gd and Ho, and negative or positive Ce anomalies develop sometimes in REE patterns. The formation conditions of peculiar rocks enriched in Ca and F from the Ary Bulak ongonite massif (eastern Transbaikalia) and the character of REE distribution in these rocks and melt inclusion glasses were discussed. Based on the obtained data and the analysis of numerous publications, it was concluded that REE tetrad effects in rare-metal granitoids are caused by fluoride-silicate liquid immiscibility and extensive melt differentiation in the accumulation chambers of fluorine-rich magmas. A considerable increase in fluorine content in a homogeneous granitoid melt can cause its heterogenization (liquation) and formation of fluoride melts of various compositions. The redistribution of lanthanides between the immiscible liquid phases of granitoid magma will result in the formation of M-type tetrad effects in the silicate melts, because the REE patterns of fluoride melts exhibit pronounced W-type tetrad effects. The maximum M-type tetrad effect between La and Nd, which is observed in many rare-metal granitoids, is related to the character of REE partitioning between fluoride and silicate melts and F- and Cl-rich magmatic fluids. The low non-chondritic Y/Ho ratio (<15) of many rare-metal granitoids may be indicative of a contribution of fluoride melts to the differentiation of F-rich silicic magmas, from which these rocks were formed. The influence of high-temperature F-Cl-bearing fluids on melts and/or granitoid rocks results in an increase in Y/Ho ratio owing to the elevated solubility of Ho in such fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Abramov, “Modeling of REE Fractionation in the Acid Melt-Fluoride-Chloride Fluid System,” Dokl. Akad. Nauk 376(6), 798–800 (2001) [Dokl. Earth Sci. 377, 198–200 (2001)].

    Google Scholar 

  2. I. Yu. Annenkova, Candidate’s Dissertation in Geology and Mineralogy (Inst. Geol. Sib. Otd. Akad. Nauk, Novosibirsk, 2003).

  3. E. V. Badanina, R. B. Trumbull, P. Dulski, M. Wiedenbeck, I. V. Veksler, and F. Syritso, “The Behavior of Rare-Earth and Lithophile Trace Elements in Rare-Metal Granites: A Study of Fluorite, Melt Inclusions and Host Rocks from the Khangilay Complex, Transbaikalia, Russia,” Can. Mineral. 44, 667–692 (2006).

    Article  Google Scholar 

  4. Yu. A. Balashov, Geochemistry of Rare Earth Elements (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  5. S. Bao, H. Zhou, X. Peng, F. Ji, and H. Yao, “Geochemistry of REE and Yttrium in Hydrothermal Fluids from the Endeavour Segment, Juan de Fuca Ridge,” Geochem. J. 42, 359–370 (2008).

    Google Scholar 

  6. M. Bau, “Controls on the Fractionation of Isovalent Trace Elements on Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf and Lanthanide Tetrad Effect,” Contrib. Mineral. Petrol. 123, 323–333 (1995).

    Article  Google Scholar 

  7. K. Breiter, J. Fryda, R. Seltmann, and R. Thomas, “Mineralogical Evidence for Two Magmatic Stages in the Evolution of an Extremely Fractionated P-Rich Rare-Metal Granites: The Podlesi Stock, Krusne Hory, Czech Republic,” J. Petrol. 38(12), 1723–1739 (1997).

    Article  Google Scholar 

  8. I. Broska, C. T. Williams, P. Uher, P. Konecny, and J. Leichmann, “The Geochemistry of Phosphorus in Different Granite Suites of the Western Carpathians, Slovakia: The Role of Apatite and P-Bearing Feldspar,” Chem. Geol. 205, 1–15 (2004).

    Article  Google Scholar 

  9. J. Dostal and A. K. Chatterjee, “Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada),” Chem. Geol. 163, 207–218 (2000).

    Article  Google Scholar 

  10. I. Fidelis and S. Siekierski, “The Regularities in Stability Constants of Some Rare Earth Complexes,” J. Inorg. Nucl. Chem. 28, 185–188 (1966).

    Article  Google Scholar 

  11. R. T. Flynn and W. C. Burnham, “An Experimental Determination of Rare Earth Partition Coefficients between a Chloride Containing Vapor Phase and Silicate Melts,” Geochim. Cosmochim. Acta. 42, 685–701 (1978).

    Article  Google Scholar 

  12. P. Fulignati, A. Giancada, and A. Sbrana, “Rare-Earth Element (REE) Behaviour in the Alteration Facies of the Active Magmatic-Hydrothermal System of Vulcano (Aeolian Islands, Italy),” J. Volcanol. Geotherm. Res. 88, 325–342 (1999).

    Article  Google Scholar 

  13. K. M. Goodenough, B. G. J. Upton, and R. M. Ellam, “Geochemical Evolution of the Ivigtut Granite, South Greenland: A Fluorite-Rich ‘A-type’ Intrusion,” Lithos 51, 205–221 (2000).

    Article  Google Scholar 

  14. E. N. Gramenitskii and T. I. Shchekina, “Behavior of Rare Earth Elements and Yttrium during the Final Differentiation Stages of Fluorine-Bearing Magmas,” Geokhimiya, No. 1, 45–59 (2005) [Geochem. Int. 43, 39–52 (2005)].

  15. E. N. Gramenitskii, T. I. Shchekina, and V. N. Devyatova, Phase Relations in the Fluorine-Bearing Granitic and Nepheline Systems and Element Partitioning between Phases (Experimental Study) (GEOS, Moscow, 2005) [in Russian].

    Google Scholar 

  16. E. N. Gramenitskii, T. I. Shchekina, Ya. O. Alfer’eva, and E. S. Zubkov, “Distribution of Elements of Groups I and II between the Liquid Phases of the Fluorine-Saturated Si-Al-Na-K-Li-H-O System,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 6, 26–32 (2008).

  17. I. Haapala, “Magmatic and Postmagmatic Processes in Tin-Mineralized Granites: Topaz-Bearing Leucogranite in the Eurajoki Rapakivi Granite Stock, Finland,” J. Petrol. 38, 1645–1659 (1997).

    Article  Google Scholar 

  18. L. Hecht, K. Thuro, R. Plinninger, and M. Cuney, “Mineralogical and Geochemical Characteristics of Hydrothermal Alteration and Epysyenitization in the Konigshain Granites, Northern Bohemian Massif, Germany,” Int. J. Earth Sci. 88, 236–252 (1999).

    Article  Google Scholar 

  19. W. Irber, “The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/Hf of Evolving Peraluminous Granite Suites,” Geochim. Cosmochim. Acta. 63, 489–508 (1999).

    Article  Google Scholar 

  20. B. Jahn, F. Wu, R. Capdevila, F. Martineau, Z. Zhenhua, and Y. Wang, “Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woule and Baerzhe Granites from the Great **ng’an Mountains in NE China,” Lithos 59, 171–198 (2001).

    Article  Google Scholar 

  21. B. L. Jolliff, J. J. Papike, C. K. Shearer, and N. Shimizu, “Inter- and Intra-Crystal REE Variation in Apatite from the Bob Ingersoll Pegmatite, Black Hills, South Dakota,” Geochim. Cosmochim. Acta 53, 429–441 (1989).

    Article  Google Scholar 

  22. I. Kawabe, “Lanthanide Tetrad Effects in the La3+ Ionic Radii and Refined Spin-Pairing Energy Theory,” Geochem. J. 25, 31–44 (1992).

    Google Scholar 

  23. U. Kempe, J. Götze, S. Dandar, and D. Habermann, “Magmatic and Metasomatic Processes during Formation of the Nb-Zr-REE Deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): Indications from Combined CL-SEM Study,” Mineral. Mag. 63(2), 165–177 (1999).

    Article  Google Scholar 

  24. V. I. Kovalenko, G. M. Tsareva, V. V. Goreglyad, V. V. Yarmolyuk, and V. A. Troitsky, “The Peralkaline Granite-Related Khaldzan-Buregtey Rare Metal (Zr, Nb, REE) Deposit, Western Mongolia,” Econ. Geol. 90, 530–547 (1995).

    Article  Google Scholar 

  25. V. D. Kozlov, “Rare-Earth Elements as Indicators of Sources of Ore Material, Degree of Differentiation and Ore Potential of a Rare-Metal Granite Intrusion (Eastern Transbaikalia),” Geol. Geofiz. 50(1), 38–53 (2009).

    Google Scholar 

  26. I. F. Kravchuk, S. D. Malinin, and N. S. Varezhkina, “Experimental Study of Europium Partitioning between Silicate Melt and Fluid at 800°C and 1.5 kbar,” Geokhimiya, No. 12, 1771–1781 (1989).

  27. I. F. Kravchuk, G. F. Ivanova, N. S. Varezhkina, and S. D. Malinin, “Rare-Earth Element Fractionation in Felsic Fluid-Magma Systems,” Geokhimiya, No. 3, 377–385 (1995).

  28. F. A. Letnikov, “Topaz Granites in Northern Kazakhstan,” Petrologiya 16(4), 339–355 (2008) [Petrology 16, 319–334 (2008)].

    Google Scholar 

  29. C. Liu and H. Zhan, “The Lanthanide Tetrad Effect in Apatite from the Altay No.3 Pegmatite, **ngjiang, China: An Intrinsic Feature of the Pegmatite Magma,” Chem. Geol. 214, 61–77 (2005).

    Article  Google Scholar 

  30. A. Masuda and Y. Ikeuchi, “Lanthanide Tetrad Effect Observed in Marine Environment,” Geochem. J. 13, 19–22 (1979).

    Google Scholar 

  31. A. Masuda, O. Kawakami, Y. Dohmato, and T. Takenaka, “Lanthanide Tetrad Effect in Nature: Two Mutually Opposite Types, W and M,” Geochem. J. 21, 110–124 (1987).

    Google Scholar 

  32. M. A. Maura and N. Francisquinibotelho, “The Topaz-Albite Granite and Related Rocks from the Sn-in Mineralized Zone of Mangabeira Granitic Massif (Go, Brasil),” Rev. Brasil. Geosci. 30, 270–273 (2000).

    Google Scholar 

  33. T. Monecke, U. Kempe, J. Monecke, M. Sala, and D. Wolf, “Tetrad Effect in Rare Earth Element Distribution Patterns: A Method of Quantification with Application to Rock and Mineral Samples from Granite-Related Rare Metal Deposits,” Geochim. Cosmochim. Acta. 66, 1185–1196 (2002).

    Article  Google Scholar 

  34. T. Monecke, P. Dulski, and U. Kempe, “Origin of Convex Tetrads in Rare Earth Element Patterns of Hydrothermally Altered Siliceous Igneous Rocks from the Zinnwald Sn-W Deposit, Germany,” Geochim. Cosmochim. Acta. 71, 335–353 (2007).

    Article  Google Scholar 

  35. T. Mulja, A. E. Willams-Jones, S. A. Wood, and M. Boily, “The Rare-Element-Enriched Monzogranite-Pegmatite-Quartz Vein Systems in the Preissac-Lacorne Batholith, Quebec. II. Geochemistry and Petrogenesis,” Can. Mineral. 33, 817–833 (1995).

    Google Scholar 

  36. J. Nugent, “Theory of the Tetrad Effect in the Lanthanide (III) and Actinide (III) Series,” J. Inorg. Chem. 32, 3485–3491 (1970).

    Google Scholar 

  37. D. Odgerel, Candidate’s Dissertation in Geology and Mineralogy (Inst. Geokhim. Sib Otd. Ross. Akad. Nauk, Irkutsk, 2009).

  38. Y. Pan and F. W. Breaks, “Rare-Earth Elements in Fluorapatite, Separation Lake Area, Ontario: Evidence for S-type Granite—Rare-Element Pegmatite Linkage,” Can. Mineral. 35, 659–871 (1997).

    Google Scholar 

  39. D. F. Peppard, G. W. Mason, and S. Lewey, “A Tetrad Effect in the Liquid-Liquid Extraction Ordering of Lanthanides (III),” J. Inorg. Nucl. Chem. 31, 2271–2272 (1969).

    Article  Google Scholar 

  40. I. S. Peretyazhko, “Inclusions of Magmatic Fluids: P-V-T-X Properties of Aqueous Salt Solutions of Various Types and Petrological Implications,” Petrologiya 17(2), 197–221 (2009) [Petrology 17, 178–201 (2009)].

    Google Scholar 

  41. I. S. Peretyazhko and E. A. Savina, “Fluid-Magma Processes during the Formation of the Rocks of the Ary-Bulak Ongonite Massif (Eastern Transbaikalia),” Geol. Geofiz. (in press).

  42. I. S. Peretyazhko and E. A. Tsareva, “Processes of Fluid-Magmatic Crystallization of Heterogeneous Magma at Rock Formation of Ary Bulak Ongonite Massif, Russia,” in Asian Current Research on Fluid Inclusions, ACROFI-2, Kharagpur, India, 2008a (Kharagpur, 2008a), pp. 147–150.

  43. I. S. Peretyazhko and E. A. Tsareva, “Inclusions of Magmatic Fluids in the Ongonites of the Ary Bulak Massif,” in 13th International Conference on Thermobarogeochemistry and 4th Symposium of APIFIS, Moscow, Russia, 2008b (IGEM RAN, Moscow, 2008b), Vol. 1, pp. 128–131 [in Russian].

    Google Scholar 

  44. I. S. Peretyazhko, V. Ye. Zagorsky, and E. A. Savina, “Uncommon Ca- and F-Rich Rocks in the Ongonite Massif Ary-Bulak (Eastern Transbaikalia, Russia) as a Result of Crystallization of Fluoride-Calcium and Alumosilicate Immiscible Melts,” in First Meeting Asia Current Research on Fluid Inclusions, ACROFI-1, Nan**g, China, 2006 Ed. by Pei Ni and Zhaolin (Nan**g, 2006a), pp. 170–172.

  45. I. S. Peretyazhko, V. Ye. Zagorsky, and E. A. Tsareva, “Enriched in Oxygen and Aluminium Fluoride-Calcium Melts in Ongonites,” in Abstracts of 16th Annual Goldschmidt Conference Melbourne, Australia, 2006 Geochim. Cosmochim. Acta 70A, 482 (2006b).

  46. I. S. Peretyazhko, V. E. Zagorskii, E. A. Tsareva, and A. N. Sapozhnikov, “Immiscibility of Calcium Fluoride and Aluminosilicate Melts in Ongonite from the Ary-Bulak Intrusion, Eastern Transbaikal Region,” Dokl. Akad. Nauk 413(2), 244–250 (2007a) [Dokl. Earth Sci. 413, 315–320 (2007a)].

    Google Scholar 

  47. I. S. Peretyazhko, E. A. Tsareva, and V. E. Zagorsky, “A First Finding of Anomalously Cs-Rich Aluminosilicate Melts in Ongonite: Evidence from Melt Inclusion Study,” Dokl. Akad. Nauk 413(6), 791–797 (2007b) [Dokl. Earth Sci. 413, 462–468 (2007b)].

    Google Scholar 

  48. F. Poitrasson, C. Pin, and J.-L. Duthou, “Hydrothermal Remobilization of Rare Earth Elements and Its Effect on Nd Isotopes in Rhyolite and Granite,” Earth Planet. Sci. Lett. 130, 1–11 (1995).

    Article  Google Scholar 

  49. A. K. Rub, M. G. Rub, M. Shtemprok, et al., “Rare-Earth Element Distribution in Extended Vertical Sections through Rare-Metal Granite Massifs in Russia, Czech Republic, and France,” Geokhimiya, No. 10, 1071–1086 (1999) [Geochem. Int. 37, 961–975 (1999)].

  50. J. Schönenberger, J. Köhler, and G. Markl, “REE Systematics of Fluorides, Calcite and Siderite in Peralkaline Plutonic Rocks from the Gardar Province, South Greenland,” Chem. Geol. 247, 16–35 (2008).

    Article  Google Scholar 

  51. S. Siekierski, “The Shape of the Lanthanide Contraction as Reflected in the Charge of the Unit Cell Volume, Lanthanide Radius and the Free Energy of Complex Formation,” J. Inorg. Nucl. Chem. 33, 377–386 (1971).

    Article  Google Scholar 

  52. S. S. Sun and W. F. McDonough, “Chemical and Isotope Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Sunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  53. Y. Takahashi, H. Yoshida, N. Sato, K. Hama, Y. Yusa, and H. Shimizu, “W- and M-Type Tetrad Effect in REE Patterns for Water-Rock Systems in the Tono Uranium Deposit, Central Japan,” Chem. Geol. 184, 311–335 (2002).

    Article  Google Scholar 

  54. R. Taylor, “Petrological and Geochemical Characteristics of the Pleasant Ridge Zinnwaldite-Topaz Granite, Southern New Brunswick, and Compositions with Other Topaz-Bearing Felsic Rocks,” Can. Mineral. 30, 895–925 (1992).

    Google Scholar 

  55. V. M. Valyashko, Phase Equilibria and Properties of Hydrothermal Systems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  56. I. V. Veksler, A. M. Dorfman, M. Kamenetsky, P. Dulski, and D. B. Dingwell, “Partitioning of Lanthanides and Y between Immiscible Silicate and Fluoride Melts, Fluorite and Cryolite and the Origin of the Lanthanide Tetrad Effect in Igneous Rocks,” Geochim. Cosmochim. Acta. 69, 2847–2860 (2005).

    Article  Google Scholar 

  57. J. D. Webster, D. M. Burt, and R. A. Aguillon, “Volatile and Lithophile Trace-Element Geochemistry of Mexican Tin Rhyolite Magmas Deduced from Melt Inclusions,” Geochim. Cosmochim. Acta. 60, 3267–3283 (1996).

    Article  Google Scholar 

  58. S. A. Wood, “The Aqueous Geochemistry of the Rare-Earth Elements and Yttrium. 2. Theoretical Predictions of Speciation in Hydrothermal Solutions to 350°C at Saturation Water Vapor Pressure,” Chem. Geol. 88, 99–125 (1990).

    Article  Google Scholar 

  59. C. Wu and S. Ishihara, “REE Geochemistry of the Southern Thailand Granites,” J. Southeast Asian Earth Sci. 10(1/2), 81–94 (1994).

    Article  Google Scholar 

  60. T. A. Yasnygina and S. V. Rasskazov, “Tetrad Effect in Rare Earth Element Distribution Patterns: Evidence from the Paleozoic Granitoids of the Oka Zone, Eastern Sayan,” Geokhimiya, No. 8, 877–889 (2008) [Geochem. Int. 46, 814–825 (2008)].

  61. G. P. Zaraisky, A. M. Aksyuk, V. N. Devyatova, et al., “The Zr/Hf Ratio as a Fractionation Indicator of Rare-Metal Granites,” Petrologiya 17(1), 28–50 (2009) [Petrology 17, 25–45 (2009)].

    Google Scholar 

  62. V. A. Zharikov and N. S. Gorbachev, “Behavior of Rare-Earth Elements in Fluid-Magma Systems Based on Experimental Data,” in Experimental Mineralogy (Nauka, Moscow, 2004), Vol. 1, pp. 21–37 [in Russian].

    Google Scholar 

  63. Z. Zhenhua, A. Masuda A., and M. B. Shabani, “REE Tetrad Effect in Rare-Metal Granites,” Chin. J. Geochem. 12(3), 206–219 (1993).

    Article  Google Scholar 

  64. Z. Zhenhua, X. **aolin, H. **aodong, W. Yixian, W. Qiang, B. Zhiwei, and B. Jahn, “Controls of the REE Tetrad Effect in Granites: Evidence from the Qianlishan and Baerzhe Granites, China,” Geochem. J. 36, 527–543 (2002).

    Google Scholar 

  65. Z. Zhenhua, Z. Bao, S.-G. Lee, and Y. A. Qiao, “A Composite M-with W-Type of REE Tetrad Effect in North China Alkaline Complex, in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008, (Vancouver, 2008), p. 1095.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Peretyazhko.

Additional information

Original Russian Text © I.S. Peretyazhko, E.A. Savina, 2010, published in Petrologiya, 2010, Vol. 18, No. 5, pp. 536–566.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peretyazhko, I.S., Savina, E.A. Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immiscibility in magmatic systems. Petrology 18, 514–543 (2010). https://doi.org/10.1134/S086959111005005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959111005005X

Keywords

Navigation