Log in

Grip Force Control in 21-Day Dry Immersion

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

During space flight, the changes in the functions of the upper limbs can affect the quality of operator activity. At the same time, there are very few data on this topic, because most of the research is focused on the structure and functions of the lower extremities. The aim was to study the characteristics of the grip force control during the decrease of the support and proprioceptive sensory signals in the conditions of the ground-based model of the effects of space flight, Dry Immersion (DI). The duration of DI exposure was 21 days. 10 male volunteers performed tests using a hand dynamometer for maximal voluntary contraction, the maintenance of the reference force, the reproduction of this force from memory, and the grip force gradation test. The subjects performed this series of tests before exposure to DI, then on days 1, 3, 5, 10, 15, and 20 of DI, and days 1 and 3 of the recovery period. The results show that DI exposure led to an increase in proprioceptive sensitivity in the tasks without visual feedback when with open eyes from day 5 of DI the subjects made more mistakes in the reproduction of the reference force using the dominant hand. The sensory processing/modulation disorder under DI factors may cause this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Johansson, R.S. and Westling, G., Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects, Exp. Brain Res., 1984, vol. 56, no. 3, p. 550.

    Article  CAS  PubMed  Google Scholar 

  2. Flanagan, J.R. and Tresilian, J.R., Grip-load force coupling: a general control strategy for transporting objects, J. Exp. Psychol. Hum. Percept. Perform., 1994, vol. 20, no. 5, p. 944.

    Article  CAS  PubMed  Google Scholar 

  3. Grover, F., Lamb, M., Bonnette, S., et al., Intermittent coupling between grip force and load force during oscillations of a hand-held object, Exp. Brain Res., 2018, vol. 236, no. 10, p. 2531.

    Article  PubMed  Google Scholar 

  4. Zakirova, A.Z., Shigueva, T.A., Tomilovskaya, E.S., and Kozlovskaya, I.B., Effects of mechanical stimulation of the sole support zones on the H-reflex characteristics under conditions of support unloading, Hum. Physiol., 2015, vol. 41, no. 2, p. 150. https://doi.org/10.1134/S0362119715020176

    Article  Google Scholar 

  5. Kozlovskaya, I.B., Gravity and the tonic postural motor system, Hum. Physiol., 2018, vol. 44, no. 7, p. 725. https://doi.org/10.1134/S036211971807006X

    Article  Google Scholar 

  6. Nosikova, I.N., Ryabova, A.M., Dmitrieva, L.E., et al., Specific features of the motor potentials of the leg muscles induced by magnetic stimulation under the conditions of a five-day “dry” immersion in healthy volunteers, Hum. Physiol., 2021, vol. 47, no. 3, p. 282. https://doi.org/10.1134/S0362119721030130

    Article  CAS  Google Scholar 

  7. Attias, J., Grassi, A., Bosutti, A., et al., Head-down tilt bed rest with or without artificial gravity is not associated with motor unit remodeling, Eur. J. Appl. Physiol., 2020, vol. 120, no. 11, p. 2407.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kozlovskaya, I.B. and Kirenskaya, A.V., Mechanisms of disorders of the characteristics of fine movements in long-term hypokinesia, Neurosci. Behav. Physiol., 2004, vol. 34, no. 7, p. 747. https://doi.org/10.1023/B:NEAB.0000036017.46801.5c

    Article  CAS  PubMed  Google Scholar 

  9. Shenkman, B.S., Tsaturyan, A.K., Vikhlyantsev, I.M., et al., Molecular mechanisms of muscle tone impairment under conditions of real and simulated space flight, Acta Nat., 2021, vol. 13, no. 2, p. 85.

    Article  CAS  Google Scholar 

  10. Schoenrock, B., Zander, V., Dern, S., et al., Bed rest, exercise countermeasure and reconditioning effects on the human resting muscle tone system, Front. Physiol., 2018, vol. 9, p. 810.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Demangel, R., Treffel, L., Py, G., et al., Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model, Physiol. J., 2017, vol. 595, no. 13, p. 4301.

    Article  CAS  Google Scholar 

  12. Juhl, O.J., Buettmann, E.G., Friedman, M.A., et al., Update on the effects of microgravity on the musculoskeletal system, NPJ Microgravity, 2021, vol. 7, no. 1, p. 28.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vil’chinskaya, N.A., Mirzoev, T.M., Lomonoso-va, Y.N., et al., Effect of short-term dry immersion on proteolytic signaling in the human soleus muscle, Hum. Physiol., 2017, vol. 43, no. 7, p. 787.

    Article  Google Scholar 

  14. Shigueva, T.A., Kitov, V.V., Amirova, L.E., et al., Effects of microgravity on characteristics of the accuracy control of movements, Front. Physiol. Conference Abstract: 39th ISGP Meeting and ESA Life Sciences Meeting. https://doi.org/10.3389/conf.fphys.2018.26.00051

  15. Iwase, S., Nishimura, N., Tanaka, K., and Mano, T., Effects of microgravity on human physiology, Beyond LEO-Human Health Issues for Deep Space Exploration, Reynolds, R.J., Ed., 2020, IntechOpen. https://doi.org/10.5772/intechopen.90700

    Book  Google Scholar 

  16. Sayenko, D.G., Miller, T.F., Melnik, K.A., et al., Acute effects of dry immersion on kinematic characteristics of postural corrective responses, Acta Astronaut., 2016, vol. 121, p. 110.

    Article  Google Scholar 

  17. Bareille, M.P. and Maillet, A., Human: bed rest/head-down-tilt/hypokinesia, in Generation and Applications of Extra-Terrestrial Environments on Earth, River, 2022, p. 133.

  18. Mulavara, A.P., Peters, B.T., Miller, C.A., et al., Physiological and functional alterations after spaceflight and bed rest, Med. Sci. Sports Exerc., 2018, vol. 50, no. 9, p. 1961.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shishkin, N.V., Ermakov, I.Yu., Amirova, L.E., et al., Vertical stability with open and closed eyes before and after 21-day dry immersion, Aviakosm. Ekol. Med., 2020, vol. 54, no. 4, p. 52.

    Google Scholar 

  20. Nguyen, N., Kim, G., and Kim, K.S., Effects of microgravity on human physiology, Korean J. Aerosp. Environ. Med., 2020, vol. 30, no. 1, p. 25.

    Article  Google Scholar 

  21. Hagio, S., Ishihara, A., Terada, M., et al., Muscle synergies of multidirectional postural control in astronauts on Earth after a long-term stay in space, J. Neurophysiol., 2022, vol. 127, no. 5, p. 1230.

    Article  PubMed  Google Scholar 

  22. Ohira, T., Kawano, F., Goto, K., et al., Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions, Neurosci. Biobehav. Rev., 2022, vol. 136, p. 104617.

    Article  PubMed  Google Scholar 

  23. Erdeniz, B. and Tükel, Ş., The effects of weightlessness on human body: spatial orientation, sensory-integration and sensory-compensation, in Comparative Kinesiology of the Human Body, Academic Press, 2020, p. 477.

    Google Scholar 

  24. Bloomberg, J.J., Reschke, M.F., Clément, G., et al., Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility due to Vestibular/Sensorimotor Alterations Associated with Space Flight, Houston, TX: Johnson Space Center, 2016. National Aeronautics and Space Administration report TM JSC-CN-36487.

  25. Gantchev, G., Gatev, P., Stambolieva, K., et al., Weightlessness influences the handgrip force matching, C. R. Acad. Bulg. Sci., 1994, vol. 47, no. 10, p. 115.

    Google Scholar 

  26. Gaveau, J., Paizis, C., Berret, B., et al., Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning, J. Neurophysiol., 2011, vol. 106, no. 2, p. 620.

    Article  PubMed  Google Scholar 

  27. Moore, S.T., Dilda, V., Morris, T.R., et al., Long-duration spaceflight adversely affects post-landing operator proficiency, Sci. Rep., 2019, vol. 9, no. 1, p. 2677.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tays, G.D., Hupfeld, K.E., McGregor, H.R., et al., The effects of long duration spaceflight on sensorimotor control and cognition, Front. Neural. Circuits, 2021, vol. 15, p. 723504.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gurovsky, N.N. and Cherpakhin, M.A., On the human sensorimotor coordination during weightlessness, Kosm. Biol. Med., 1967, vol. 1, no. 3, p. 52.

    Google Scholar 

  30. Bock, O. and Cheung, B.S.K., Control of isometric force in hypergravity, Aviat. Space Environ. Med., 1998, vol. 69, no. 1, p. 27.

    CAS  PubMed  Google Scholar 

  31. Mierau, A., Girgenrath, M., and Bock, O., Isometric force production during changed-Gz episodes of parabolic flight, Eur. J. Appl. Physiol., 2008, vol. 102, no. 3, p. 313.

    Article  PubMed  Google Scholar 

  32. Dalecki, M., Dräger, T., Mierau, A., and Bock, O., Production of finely graded forces in humans: effects of simulated weightlessness by water immersion, Exp. Brain Res., 2012, vol. 218, no. 1, p. 41.

    Article  CAS  PubMed  Google Scholar 

  33. Koppelmans, V., Mulavara, A.P., Yuan, P., et al., Exercise as potential countermeasure for the effects of 70 days of bed rest on cognitive and sensorimotor performance, Front. Syst. Neurosci., 2015, vol. 9, p. 121.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Opsomer, L., Théate, V., Lefèvre, Ph., and Thonnard, J.-L., Dexterous manipulation during rhythmic arm movements in Mars, moon, and micro-gravity, Front. Physiol., 2018, vol. 9, p. 938.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bruno, V., Sarasso, P., Fossataro, C., et al., The rubber hand illusion in microgravity and water immersion, NPJ Microgravity, 2022, vol. 8, no. 1, p. 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tays, G.D., McGregor, H.R., Lee, J.K., et al., The effects of 30 minutes of artificial gravity on cognitive and sensorimotor performance in a spaceflight analog environment, Front. Neural. Circuits, 2022, vol. 16, p. 784280.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ekstrand, E., Rylander, L., Lexell, J., and Brogårdh, C., Perceived ability to perform daily hand activities after stroke and associated factors: a cross-sectional study, BMC Neurol., 2016, vol. 16, no. 1, p. 208.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shul’zhenko, E.B. and Vil’-Vil’yams, I.F., Possibility of long-term water immersion by the method of “dry” immersion, Kosm. Biol. Aviakosm. Med., 1976, vol. 10, no. 9, p. 82.

    PubMed  Google Scholar 

  39. Shul’zhenko, E.B., Physiological effects of changed gravity (model experiments in terrestrial conditions), Extended Abstract of Doctoral Dissertation, Inst. Med.-Biol. Probl., Moscow, 1975, p. 27.

  40. Tomilovskaya, E.S., Rukavishnikov, I.V., Amirova, L.E., et al., 21-Day dry immersion: schedule of investigations and major results, Hum. Physiol., 2021, vol. 47, no. 7, p. 735. https://doi.org/10.1134/S0362119721070112

    Article  Google Scholar 

  41. Reschke, M.F., Kozlovskaya, I.B., Lysova, N., et al., Joint Russian-USA field test: implications for deconditioned crew following long duration spaceflight, Aviakosm. Ekol. Med., 2020, vol. 54, no. 6, p. 94.

    Google Scholar 

  42. Jones, L.A. and Hunter, I.W., Effect of fatigue on force sensation, Exp. Neurol., 1983, vol. 81, no. 3, p. 640.

    Article  CAS  PubMed  Google Scholar 

  43. Tang, L., Zhang, H., and Zhang, B., A note on error bars as a graphical representation of the variability of data in biomedical research: choosing between standard deviation and standard error of the mean, J. Pancreatol., 2019, vol. 2, no. 3, p. 69.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reynolds, R.J. and Shelhamer, M., Research methods for the next 60 years of space exploration, Beyond LEO-Human Health Issues for Deep Space Exploration, IntechOpen, 2020. https://doi.org/10.5772/intechopen.92331

    Book  Google Scholar 

  45. Miller, L.J., Nielsen, D.M., Schoen, S.A., and Brett-Green, B.A., Perspectives on sensory processing disorder: a call for translational research, Front. Hum. Neurosci., 2009, vol. 3. p. 22.

    Google Scholar 

  46. Miller, L.J., Schoen, S.A., Mulligan, S., and Sullivan, J., Identification of sensory processing and integration symptom clusters: a preliminary study, Occup. Ther. Int., 2017, p. 2876080.

  47. Bar-Shalita, T., Granovsky, Y., Parush, S., and Weissman-Fogel, I., Sensory modulation disorder (SMD) and pain: a new perspective, Front. Hum. Neurosci., 2019, vol. 13, p. 27.

    Google Scholar 

  48. Glukhikh, D.O., Naumov, I.A., Kornilova, L.N., et al., Eye tracking function, visual-manual tracking and vestibular function during 21-day dry immersion, Aviakosm. Ekol. Med., 2020, vol. 54, no. 4, p. 44.

    Google Scholar 

  49. Naumov, I.A., Kornilova, L.N., Glukhikh, D.O., et al., The effect of afferentation of various sensory systems on the otolith-ocular reflex in a real and simulated weightlessness, Hum. Physiol., 2021, vol. 47, no. 1, p. 70. https://doi.org/10.1134/S0362119720060080

    Article  CAS  Google Scholar 

  50. Sosnina, I.S., Lyakhovetskii, V.A., Zelenskiy, K.A., et al., The effect of a 21-day dry immersion on Ponzo and Müller—Lyer illusions, Hum. Physiol., 2021, vol. 47, no. 1, p. 51. https://doi.org/10.1134/S0362119721010138

    Article  Google Scholar 

  51. Shoshina, I.I., Sosnina, I.S., Zelenskiy, K.A., et al., The contrast sensitivity of the visual system in “dry” immersion conditions, Biophysics (Moscow), 2020, vol. 65, no. 4, p. 681. https://doi.org/10.1134/S0006350920040211

    Article  CAS  Google Scholar 

  52. Pasekova, O.B., Sigaleva, E.E., Marchenko, L.Yu., and Matsnev, E.I., The prospect of using the method of recording various classes of otoacoustic emissions for dynamic assessment of the intracranial pressure under conditions of simulated microgravity and space flight, Nauchnoe znachenie trudov K.E. Tsiolkovskogo: istoriya i sovremennost’ (Scientific Value of K.E. Tsiolkovsky’s Works: History and Modrnity) (Proc. 55th Sci. Readings in Memory of K. E. Tsiolkovsky), Kaluga: Eidos, 2020, part 1, p. 314.

  53. Tomilovskaya, E.S., Kirenskaya, A.V., Lazarev, I.E., et al., Influence of weightlessness on the characteristics of presaccadic EEG potentials in subjects with different asymmetry profiles, Aviakosm. Ekol. Med., 2008, vol. 42, no. 5, p. 14.

    Google Scholar 

Download references

Funding

The study was funded by the Russian Science Foundation (grant no. 19-15-00435), https://rscf.ru/project/ 19-15-00435/.

Author information

Authors and Affiliations

Authors

Contributions

Zelenskaya, K.A. Zelenskii and E.S. Tomilovskaya designed the study. I.S. Zelenskaya conducted a study. I.S. Zelenskaya, A.A. Saveko and L.E. Amirova analyzed the results of the experimental group. A.A. Saveko reviewed the control results. The manuscript has been extensively revised. I.S. Zelenskaya and L.E. Amirova wrote a draft of the manuscript. V.V. Kitov, I.N. Nosikova and K.A. Zelenskii contributed to the Materials and Methods section. E.S. Tomilovskaya was the leader of the 21-day Dry Immersion experiment and provided advisory support at every stage of the preparation of this work. All authors read and approved the final submitted manuscript.

Corresponding author

Correspondence to I. S. Zelenskaya.

Ethics declarations

All studies were carried out in accordance with the principles of biomedical ethics formulated in the Declaration of Helsinki of 1964 and its subsequent updates and were approved by the Commission on Biomedical Ethics of the State Scientific Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences (Moscow) (protocol No. 483 dated August 3, 2018).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenskaya, I.S., Saveko, A.A., Amirova, L.E. et al. Grip Force Control in 21-Day Dry Immersion. Hum Physiol 49, 579–588 (2023). https://doi.org/10.1134/S0362119723600315

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723600315

Keywords:

Navigation