Log in

Natural Alloys of the Cu–Ni System from Impactites of the Lonar Crater (India) and Lunar Regolith

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

A comparative study of impact glasses from the Lonar crater, located on the Deccan basalt plateau, India, and impact glasses from lunar regolith delivered by the Soviet automatic stations (AS) Luna-16 and Luna-24 (Sea of Plenty and Sea of Crises) was carried out. Numerous natural alloys (Cu3Ni2, Ni2Cu and Ni3Cu) that were previously unknown in nature were discovered in the impactites of the Lonar crater and the regolith of the Moon. The discovery of such alloys expands the area of isomorphism in the Cu–Ni system. As a result of a comparison of impactites of the Earth and the Moon, similarities were discovered in the composition, size and morphology of particles of copper–nickel alloys, which may be an indicator of impact processes. One of the possible mechanisms for the formation of Ni–Cu particles was condensation from a gas–plasma cloud. A possible source of material for Cu–Ni alloys was both the impactor material and the target material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Bazilevskii, A.T. and Nazarov, M.A., Otchet o rezul’tatakh komandirovaniya uchenykh za granitsu; strana komandirovaniya Indiya (Report on the Results of a Scientific Trip Abroad; Country of Travel India), Moscow: GEOKhI AN SSSR, 1983.

  2. Chandran, S.R., James, S., Santosh, M., Yang, C.X., Zhang, C., Rajesh, V.J., Satyanarayanan, M., Praveen, M.N., Anilkumar, Y., Singh, S.P., and Keerthy, S., Geochemical and geochronological evidence of meteorite impact excavating the Archean basement at Lonar Crater, Central India, Lithos, 2021, vols. 404–405, p. 106479.

    Article  Google Scholar 

  3. Chandran, S.R., James, S., Aswathi, J., Padmakumar, D., Marjan, T.S., Kumar, R.B., Chavan, A., Bhandari, S., and Sa**kumar, K.S., A compendium of the best-preserved terrestrial hypervelocity impact crater in a basaltic terrain: The Lonar, India, Earth Sci. Rev., 2023, vol. 243, p. 104508.

    Article  Google Scholar 

  4. Chao, E.C.T., Dwornik, E.J., and Littler, J., New data on the nickel-iron spherules from southeast Asian tektites and their implications, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 971–974.

    Article  ADS  Google Scholar 

  5. Crosta, A.P., Koeberl, C., Furuie, R.A., and Kazzuo-Vieira, C., The first description and confirmation of the Vista Alegre impact structure in the Parana flood basalts of southern Brazil, Meteorit. Planet. Sci., 2010, vol. 45, no. 2, pp. 181–194.

    Article  ADS  Google Scholar 

  6. Das Gupta, R., Banerjee, A., Goderis, S., Claeys, P., Vanhaecke, F., and Chakrabarti, R., Evidence for a chondritic impactor, evaporation-condensation effects and melting of the precambrian basement beneath the ‘target’ Deccan basalts at Lonar crater, India, Geochim. Cosmochim. Acta, 2017, vol. 215, pp. 51–75.

    Article  ADS  Google Scholar 

  7. Drits, M.E., Bochvar, N.R., Guzei, L.S., Lysova, E.V., Padezhnova, E.M., Rokhlin, L.L., and Turkina, N.I., Dvoinye i mnogokomponentnye sistemy na osnove medi: spravochnik (Dual and Multi-Component Copper-Based Systems: Handbook), Moscow: Nauka, 1979.

  8. Fel’dman, V.I., Korotaeva, N.I., and Sveshnikova, E.V., Infrared spectra of tektites, impactites and obsidians, Izv. Akad. Nauk SSSR, Ser. Geol., 1983, no. 2, pp. 96–100.

  9. Feldman, V.I., Sazonova, L.V., Mironov, Y.V., Kapustkina, I.G., and Ivanov, B.A., Circular structure Logancha as possible meteorite crater in basalts of the Tunguska syneclise, XIV Lunar and Planet. Sci. Conf. Abstract, 1983, vol. 14, pp. 191–192.

  10. Fredriksson, K., Dube, A., Milton, D.J., and Balasundaram, M.S., Lonar Lake, India: An impact crater in basalt, Science, 1973, vol. 180, no. 4088, pp. 862–864.

    Article  ADS  Google Scholar 

  11. Glass, B.P., Fredriksson, K., and Florensky, P.V., Microirghizites recovered from a sediment sample from the Zhamanchin impact structure, J. Geophys. Res.: Solid Earth, 1983, vol. 88 Suppl., pp. 319–330.

    Google Scholar 

  12. Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Impactor type and model of the origin of the Zhamanshin Astrobleme, Kazakhstan, Petrology, 2018, vol. 26, no. 1, pp. 82–95.

    Article  Google Scholar 

  13. Gornostaeva, T.A., Kartashov, P.M., Mokhov, A.V., Rybchuk, A.P., and Basilevsky, A.T., Native nickel-iron metals from Lonar crater impactites (India) and regolith of the Moon, Sol. Syst. Res., 2023, vol. 57, pp. 295–306.

    Article  ADS  Google Scholar 

  14. Jaret, S.J., Phillips, B.L., King, D.T., Jr., Glotch, T.D., Rahman, Z., and Wright, S.P., An unusual occurrence of coesite at the Lonar crater, India, Meteorit. Planet. Sci., 2017, vol. 52, no. 1, pp. 147–163.

    Article  ADS  Google Scholar 

  15. Kartashov, P.M., Mokhov, A.V., Gornostaeva, T.A., Bogatikov, O.A., and Ashikhmina, N.A., Mineral phases on the fracture of a glass particle and in the fines of a Luna 24 regolith sample, Petrology, 2010, vol. 18, no. 2, pp. 107–125.

    Article  Google Scholar 

  16. Komatsu, G., Coletta, A., Battagliere, M.L., and Virelli, M., Logancha, Russia, in Encyclopedic Atlas of Terrestrial Impact Craters, 2019, pp. 171–173.

  17. Lesnov, F.P., Korolyuk, V.N., Oidup, Ch.K., and Mongush, A.A., The first discovery of “nickel copper” in the ultramafic rocks of Tuva, Nauchnaya konferentsiya “Petrologiya i rudonosnost' magmaticheskikh formatsii” (Scientific Conference “Petrology and Ore Potential of Igneous Formations”), Novosibirsk, April 25–29, 2022, pp. 124–126.

  18. Lodders, K., Solar system abundances and condensation temperatures of the elements, Astrophys. J., 2003, vol. 591, no. 2, pp. 1220–1247.

    Article  ADS  Google Scholar 

  19. Luszczek, K. and Krzesińska, A.M., Copper in ordinary chondrites: Proxies for resource potential of asteroids and constraints for minimum-invasive and economically efficient exploitation, Planet. Space Sci., 2020, vol. 194, p. 105092.

    Article  Google Scholar 

  20. Maloof, A.C., Stewart, S.T., Weiss, B.P., Soule, S.A., Swanson-Hysell, N.L., Louzada, K.L., Garrick-Bethell, I., and Poussart, P.M., Geology of Lonar crater, India, Geolog. Soc. Am. Bull., 2010, vol. 122, nos. 1/2, pp. 109–126.

    Article  ADS  Google Scholar 

  21. Markova, O.M., Yakovlev, O.I., Semenov, G.A., and Belov, A.N., Some general results of experiments on the evaporation of natural melts in the Knudsen chamber, Geokhimiya, 1986, no. 11, pp. 1559–1569.

  22. Masaitis, V.L., Impact structures of northeastern Eurasia: The territories of Russia and adjacent countries, Meteorit. Planet. Sci., 1999, vol. 34, no. 5, pp. 691–711.

    Article  ADS  Google Scholar 

  23. Mokhov, A.V., Gornostaeva, T.A., Kartashov, P.M., Rybchuk, A.P., and Bogatikov, O.A., Native alloys of the Pd–Pt and Ni–Cu–Al systems from the AS Luna-24, Dokl. Earth Sci., 2018, vol. 481, pp. 898–901.

    Article  ADS  Google Scholar 

  24. Mougel, B., Moynier, F., Koeberl, C., Wielandt, D., and Bizzarro, M., Identification of a meteoritic component using chromium isotopic composition of impact rocks from the Lonar impact structure, India, Meteorit. and Planet. Sci, 2019, vol. 54, no. 10, pp. 2592–2599.

    Article  ADS  Google Scholar 

  25. Murali, A.V., Zolensky, M.E., and Blanchard, D.P., Tektite-like bodies at Lonar crater, India: Implications for the origin of tektites, J. Geophys. Res.: Solid Earth, 1987, vol. 92, no. B4, pp. E729–E735.

    ADS  Google Scholar 

  26. Nayak, V.K., Maskelynite from the Indian impact crater at Lonar, J. Geol. Soc. India, 1993, vol. 41, no. 4, pp. 307–312.

    Google Scholar 

  27. Nickel, E.H., Solid solutions in mineral nomenclature, Mineral. Petrol., 1992, vol. 46, no. 1, pp. 49–53.

    Article  ADS  Google Scholar 

  28. Osae, S., Misra, S., Koeberl, C., Sengupta, D., and Ghosh, S., Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry, Meteorit. Planet. Sci., 2005, vol. 40, nos. 9/10, pp. 1473–1492.

    Article  ADS  Google Scholar 

  29. Pittarello, L., Nestola, F., Viti, C., Crosta, A.P., and Koeberl, C., Melting and cataclastic features in shatter cones in basalt from the Vista Alegre impact structure, Brazil, Meteorit. Planet. Sci., 2015, vol. 50, no. 7, pp. 1228–1243.

    Article  ADS  Google Scholar 

  30. Popov, V.A., Kolisnichenko, S.V., and Blinov, I.A., Nickel copper and nakauriite from the Blue Vein in ultramafic rocks (Verkhneufaleysky district, Southern Urals), Chetyrnadtsatye Vseros. nauchn. chteniya pamyati il’menskogo mineraloga V.O. Polyakova (Fourteenth All-Russian Scientific Readings in Memory of the Ilmen Mineralogist V.O. Polyakov), Miass: Imin UrO RAN, 2013, pp. 13–24.

    Google Scholar 

  31. Ray, D. and Misra, S., Contrasting aerodynamic morphology and geochemistry of impact spherules from Lonar crater, India: Some insights into their cooling history, Earth, Moon, and Planets, 2014, vol. 114, pp. 59–86.

    Article  ADS  Google Scholar 

  32. Ray, D., Upadhyay, D., Misra, S., Newsom, H.E., and Ghosh, S., New insights on petrography and geochemistry of impactites from the Lonar crater, India, Meteorit. Planet. Sci., 2017, vol. 52, no. 8, pp. 1577–1599.

    Article  ADS  Google Scholar 

  33. Reid, A.M., Park, F.R., and Cohen, A.J., Synthetic metallic spherules in a philippine tektite, Geochim. Cosmochim. Acta, 1964, vol. 28, no. 6, pp. 1004–1010.

    Article  ADS  Google Scholar 

  34. Saltykovskii, A.Ya., Tsel’movich, V.A., Baiaraa, T., Nikitin, A.N., Ivankina, T.I., Komatsu, Dzh., and Ormoo, Yu., Impact crater and composition of cosmic matter in the Early Paleozoic structural zone of Southern Mongolia, Dvenadtsataya Mezhdunar. konf. “Fiziko-khimich. i petrofizich. issled. v naukakh o Zemle.” Materialy konferentsii (Proc. 12th Int. Conf. “Physico-Chemical and Petrophysical Research in Earth Sciences”), Moscow–Borok, October 3–6, 2011, pp. 298–302.

  35. Schmieder, M. and Kring, D.A., Earth’s impact events through geologic time: A list of recommended ages for terrestrial impact structures and deposits, Astrobiology, 2020, vol. 20, no. 1, pp. 91–141.

    Article  ADS  Google Scholar 

  36. Schulz, T., Luguet, A., Wegner, W., van Acken, D., and Koeberl, C., Target rocks, impact glasses, and melt rocks from the Lonar crater, India: highly siderophile element systematic and Sr-Nd-Os isotopic signatures, Meteorit. Planet. Sci., 2016, vol. 51, no. 7, pp. 1323–1339.

    Article  ADS  Google Scholar 

  37. Sen, G. and Chandrasekharam, D., Deccan traps flood basalts province: An evaluation of the thermochemical plume model, in Topics in Igneous Petrology, Ray, J., Sen, G., and Ghosh, B., Eds., Berlin: Springer, 2011.

    Google Scholar 

  38. Son, T.H. and Koeberl, C., Chemical variation in Lonar impact glasses and impactites, GFF, 2007, vol. 129, no. 2, pp. 161–176.

    Article  Google Scholar 

  39. Steele, R.C., Coath, C.D., Regelous, M., Russell, S., and Elliott, T., Neutron-poor nickel isotope anomalies in meteorites, Astrophys. J., 2012, vol. 758, no. 1, p. 59.

    Article  ADS  Google Scholar 

  40. Vasconcelos, M.A.R., Rocha, F.F., Crósta, A.P., Wünnemann, K., Güldemeister, N., Leite, E.P., Ferreira, J.C., and Reimold, W.U., Insights about the formation of a complex impact structure formed in basalt from numerical modeling: The Vista Alegre structure, southern Brazil, Meteorit. Planet. Sci., 2019, vol. 54, no. 10, pp. 2373–2383.

    Article  ADS  Google Scholar 

  41. Volokhin, Yu.G. and Karabtsov, A.A., Minerals in carbonaceous silicites of the Triassic Sikhote-Alin, Litol. Polezn. Iskop., 2016, no. 5, pp. 465–484.

  42. Wasson, J.T. and Kallemeyn, G.W., Compositions of chondrites, Philos. Trans. R. Soc. London A, 1988, vol. 325, no. 1587, pp. 535–544.

    Article  ADS  Google Scholar 

  43. Yakovlev, O.I., Dikov, Yu.P., Gerasimov, M.V., Vlotska, F., and Khut, I., Experimental study of factors determining the composition of lunar regolith glasses, Geokhimiya, 2003, no. 5, pp. 467–481.

  44. Yakovlev, O.I., Gerasimov, M.V., and Dikov, Yu.P., Estimation of temperature conditions for the formation of HASP and GASP glasses from the lunar regolith, Geochem. Int., 2011, vol. 49, no. 3, pp. 213–223.

    Article  Google Scholar 

Download references

Funding

The work was carried out at the expense of budget funds under the state order of the Geochemical Institute of the Russian Academy of Sciences within the framework of the topic FMMZ-2024-0048 “Development of a set of complementary methods for studying the chemical composition, transformation and migration of nano/microparticles and easily mobile forms of elements in the environment, the Earth’s crust and the Lunar regolith.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gornostaeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornostaeva, T.A., Kartashov, P.M., Mokhov, A.V. et al. Natural Alloys of the Cu–Ni System from Impactites of the Lonar Crater (India) and Lunar Regolith. Sol Syst Res 58, 377–387 (2024). https://doi.org/10.1134/S0038094624700266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094624700266

Keywords:

Navigation