Log in

Kinetics and Thermodynamics of Iron(III) Ion Removal from Aqueous Solutions by Dowex G-26(H) Resin

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The factors affecting iron(III) adsorption by strongly acidic Dowex G-26(H) cation-exchange resin are studied. These factors include the adsorbent dose, pH of the solution, contact time, initial Fe(III) concentration in the solution, and temperature. Langmuir and Freundlich adsorption isotherms are constructed from the experimental results. Both isotherms quite satisfactorily describe Fe(III) adsorption by the Dowex G-26(H) adsorbent, which is indicated by high (close to unity) coefficients of determination (R2). The calculated capacity of the adsorbent ranges from 166.6 to 196.1 mg g–1 at different temperatures (T = 293–313 K). The kinetic and thermodynamic parameters of the process (ΔH°, ΔS°, ΔG°) have been determined. The positive calculated standard entropy (ΔS°) and enthalpy (ΔH°) changes suggest that the adsorption of Fe(III) ions on the resin is endothermic and spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. B. W. H. Q. Gordan, Guidelines for Drinking Organization Water Quality (World Health Organization, Geneva, 2022).

    Google Scholar 

  2. I. Y. el-Sberif, N. A. Fathy, and A. A. Nanna, “Removal of Mn(II) and Fe(II) ions from aqueous solution using precipitation and adsorption methods,” J. Appl. Sci. Res., No. 9, 233–239 (2013).

  3. A. G. Kasimov, N. S. Areshina, I. E. Mal’ts, T. R. Zinkovich, and M. A. Mikhailenko, “Sorption purification of solutions from the copper–nickel production using Pirolite ion-exchange resins,” Kratkie Soobshch. Sorb. Khromat. Protsessy 11 (5), 689–692 (2011).

    Google Scholar 

  4. K. Pyrzynska and M. Bystrejewski, “Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles,” Colloids. Surf. A. Physicochem. Eng. Asp. 362, 102–109 (2010).

    Article  CAS  Google Scholar 

  5. R. F. P. M. Moreira, V. S. Madeira, H. J. Sose, and E. Humeres, “Removal of iron from water using adsorbent carbon,” Separat. Sci. Technol. 39 (2), 271–285 (2004).

    Article  Google Scholar 

  6. A. Z. Mohammed, D. Allahyar, and A. S. Behrauz, “Removal of iron and manganese from groundwater sources using nano-biosorbents,” Chem. Biol. Technol. Agriculture 9 (3), 1–14 (2022).

    Google Scholar 

  7. L. C. Ostroski, M. A. de Barros, S. D. da Silva, J. H. Dantas, and P. A. Arroyo, “The removal of Fe(III) ions by adsorption onto zeolite columns,” Ads. Sci. Technol. 25, 757–768 (2007).

    Article  CAS  Google Scholar 

  8. S. Vasudevan, I. Sayaraj, J. Lakshmi, and G. Sozhan, “Removal of iron from drinking water by electrocoagulation: Adsorption and kinetics studies,” Korean J. Chem. Eng. 26, 1058–1064 (2009). https://doi.org/10.1007/S11814-009-0176-9

    Article  CAS  Google Scholar 

  9. B. Das, P. Hazarika, G. Saikia, H. Kalita, D. C. Goswani, H. B. Das, and R. K. Datta, “Removal of iron from groundwater by ash,” J. Hazard Mater. 141, 834–841 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. A. H. Salimi, A. Shamshiri, E. Laberi, H. Bonakdari, A. Akhbari, et al., “Total iron removal from aqueous solution by using modified clinoptilolite,” Ain. Shams Eng. J. 13, 101495 (2022).

    Article  Google Scholar 

  11. I. Pandova, M. Rimar, A. Panda, S. Vilicek, M. Kusnerova, and M. Harnicarova, “A study of using natural sorbent to reduce iron cations from aqueous solutions,” Int. J. Environmen. Res. Public Health 17 (10), (2020).

  12. M. A. Robinson-Lora and R. A. Brennan, “Efficient metal removal and neutralization of acid mine drainage by crab-shell chitin under batch and continuous-flow conditions,” Biores. Technol. 100, 5063–5071 (2009).

    Article  CAS  Google Scholar 

  13. J. Cama, C. Ayora, X. Querol, and J. Gemor, “Dissolution kinetics of synthetic zeolite NaP1 and Hs implication to zeolite treatment of contaminated waters,” Env. Sci. Technol., 4871–4878 (2005).

  14. S. Milonjie, S. D. Cupic, and L. Gerovic, “Sorption of ferric and ferrous ions on silica,” Mater. Sci. Forum 518, 67–72 (2006).

    Article  Google Scholar 

  15. V. N. Nguyen, Ch. Lee, M. K. Sha, K. Yoo, and S. Seong, “Copper recovery from low concentration waste solution using DOWEX G-26 resin,” Hydrometallurgy, 97237–97242 (2009).

  16. W. Chen, T. Liu, and Ch. Leb, “Recycle of vanadium from aluminium slag of ferrovanadium,” IOP Conf. Ser. Mater. Sci. Eng. 720, 012001 (2020).

  17. W. Chen, C. Lee, and H. Ho, “Purification of lithium carbonate from sulphate solutions through hydrogenation using the DOWEX G-26 resin,” Appl. Sci. 8, 2252 (2018).

    Article  CAS  Google Scholar 

  18. A. V. Bakhvalov, “Procedure of the accelerated determination of the iron content in water,” Problems Sovrem. Nauki Obraz. 11 (41), 65–69 (2015).

    Google Scholar 

  19. L. Khezami and R. Capart, “Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies,” J. Hazard Mater. 31 (123(1–3)), 223–231 (2005).

    Article  Google Scholar 

  20. B. E. Reed and M. R. Matsumoto, “Modeling Cd adsorption in single and binary adsorbent (PAC) systems,” J. Environmen. Eng. 119 (2), 332–348 (1993).

    Article  CAS  Google Scholar 

  21. Adsorption on Uniform Solid Surface. Langmuir Equation: Methodical Instructions to the Calculation Laboratory Work on Disciplines “Surface Phenomena and Disperse Systems” and “Colloidal Chemistry” for Students of Individual Development Plans (Izd. Tomsk Politekh. Univ., Tomsk, 2011).

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Geidarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geidarov, A.A., Abbasova, N.I., Dzhabbarova, Z.A. et al. Kinetics and Thermodynamics of Iron(III) Ion Removal from Aqueous Solutions by Dowex G-26(H) Resin. Russ. Metall. 2023, 1665–1671 (2023). https://doi.org/10.1134/S0036029523110071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523110071

Keywords:

Navigation