Log in

Facile Synthesis of Gd2O3/rGO Nanocomposite: Optical, Thermal, Morphological, Structural, and Catalytic Studies

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Modified Hummers’ method was employed for the synthesis of graphene oxide, which was used as a precursor for the synthesis of reduced graphene oxide by using chemical reduction method. Sol-gel method was applied for the synthesis of gadolinium oxide and gadolinium oxide/reduced graphene oxide (Gd2O3/rGO) nanocomposite in the presence of dioctyl sulfosuccinate sodium salt. The prepared material was characterized by using UV-Visible spectroscopy, FTIR, TGA, SEM, and XRD. UV-Visible spectroscopy was used to find the band gap, which was found 4.6 eV for Gd2O3/rGO nanocomposite. FTIR helps in identifying the functional groups. TGA was used to determine thermal stability, kinetic and thermodynamic parameters. Crystallite size of Gd2O3/rGO nanocomposite was determined as 4.38 nm using XRD data. SEM was used to study morphology of prepared material, while degradation efficiency of nanocomposite was checked against methylene blue dye. Gadolinium oxide showed only 19.3% photocatalytic activity in 75 min. Gadolinium oxide/reduced graphene oxide nanocomposite displayed higher degradation efficiency (70% in 75 min) as compared with pure gadolinium oxide against methylene blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. M. S. Usman, M. Z. Hussein, A. U. Kura, et al., Appl. Nanosci. 8, 973 (2018).

    Article  CAS  Google Scholar 

  2. S. Perveen and M. A. Farrukh, J. Mater. Sci.: Mater. Electron. 28, 10806 (2017).

    CAS  Google Scholar 

  3. G. Sharma, D. Prema, Venkataprasanna, et al., Arab. J. Chem. 13, 7680 (2020).

    Article  CAS  Google Scholar 

  4. M. J. Akhtar, M. Ahamed, and H. Alhadlaq, Nanomaterials 10 (9), 1 (2020).

    Article  Google Scholar 

  5. A. Afzaal and M. A. Farrukh, Mater. Sci. Eng. B 223, 167 (2017).

    Article  CAS  Google Scholar 

  6. Y. D. Yin, G. Y. Hong, and B. F. **n, Chin. Chem. Lett. 18, 491 (2007).

    Article  CAS  Google Scholar 

  7. M. A. Farrukh, I. Muneer, S. Sharif, Z. Munawar, and N. Batool, Mater. Res. Express 5, 1 (2018).

    Article  Google Scholar 

  8. M. A. Farrukh, M. Shahid, I. Muneer, S. Javaid, and M. Khaleeq-ur-Rahman, J. Mater. Sci.: Mater. Electron. 27, 2994 (2015).

    Google Scholar 

  9. T. Saravanan, P. Anan, M. Shanmugam, et al., Solid State Sci. 83, 171 (2018).

    Article  CAS  Google Scholar 

  10. S. Javaid, M. A. Farrukh, I. Muneer, et al., Superlatt. Microstruct. 82, 234 (2015).

    Article  CAS  Google Scholar 

  11. K. Dědková, L. Kuzníková, L. Pavelek, et al., Mater. Chem. Phys. 197, 226 (2017).

    Article  Google Scholar 

  12. K. Ye, J. Wang, N. Li, et al., Inorg. Chem. Commun. 45, 116 (2014).

    Article  CAS  Google Scholar 

  13. S. Jeon, J. W. Ko, and W. B. Ko, Catalysts 11, 742 (2021).

    Article  CAS  Google Scholar 

  14. S. Manavalan, U. Rajaji, S.-M. Chen, et al., J. Electroanal. Chem. 837, 167 (2019).

    Article  CAS  Google Scholar 

  15. J. Liu, L. Huang, X. Tian, et al., Int. J. Nanomed. Nanosurg. 12, 1 (2017).

    Google Scholar 

  16. L. P. Lingamdinne, S. Lee, J.-S. Choi, et al., Appl. J. Hazard. Mater. 402, 1 (2020).

    Google Scholar 

  17. E. Correa, B. Bosch-Santos, F. Cavalcante, et al., Am. Inst. Phys. Adv. 6 (5), 1 (2016).

    Google Scholar 

  18. J.-G. Kang, B.-K. Min, and Y. Sohn, Ceram. Int. 41, 1243 (2015).

    Article  CAS  Google Scholar 

  19. S. A. Khan, S. Gambhir, and A. Ahmad, Beilstein J. Nanotechnol. 5, 249 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. H. N. Sheikh, H. Khajuria, J. Ladol, et al., Sloven. Chem. Soc. 62, 849 (2015).

    Google Scholar 

  21. M. A. Farrukh, F. Naseem, A. Imtiaz, et al., Russ. J. Phys. Chem. A 90, 1231 (2016).

    Article  CAS  Google Scholar 

  22. F. Iskandar, U. Hikmah, E. Stavila, and A. H. Aimon, R. Soc. Chem. Adv. 7, 52391 (2017).

    CAS  Google Scholar 

  23. J. Liu, Z. Wang, L. Liu, and W. Chen, Phys. Chem. Chem. Phys. 13, 13216 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Q. Gao, Z. Yuan, L. Dong, et al., Electrochim. Acta 270, 417 (2018).

    Article  CAS  Google Scholar 

  25. L. Wang, L. Miao, H. Yang, et al., Electrochim. Acta 281, 638 (2018).

    Article  CAS  Google Scholar 

  26. V. Vinesh, A. Shaheer, and B. Neppolian, Ultrason. Sonochem. 50, 302 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. M. Govindasamy, S. Manavalan, S.-M. Chen, et al., Sens. Actuat., B 272, 274 (2018).

  28. H. Li, G. Wang, F. Zhang, et al., R. Soc. Chem. Adv. 2, 12413 (2012).

    CAS  Google Scholar 

  29. M. S. Bakshi, Cryst. Growth Des. 16, 1104 (2015).

    Article  Google Scholar 

  30. H. Perveen, M. A. Farrukh, M. Khaleeq-ur-Rahman, et al., Russ. J. Phys. Chem. A 89, 99 (2014).

    Article  Google Scholar 

  31. N. Aslam, M. A. Farrukh, and S. Karim, Russ. J. Phys. Chem. A 93, 1610 (2019).

    Article  Google Scholar 

  32. A. Imtiaz, M. A. Farrukh, M. Khaleeq-ur-Rahman, and R. Adnan, Sci. World J. 2013, 1 (2013).

    Article  Google Scholar 

  33. M. A. Farrukh, P. Tan, and R. Adnan, Turk. J. Chem. 36, 303 (2012).

    CAS  Google Scholar 

  34. A. Javaid and M. A. Farrukh, J. Chin. Chem. Soc. 70, 32 (2023).

  35. I. Muneer, M. A. Farrukh, D. Ali, and F. Bashir, Mater. Sci. Eng. B 265, 115028 (2021).

  36. H. Liu, C. Wang, and G. Wang, Chem. Asian J. 15, 3239 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. V. L. E. Siong, X. H. Tai, K. M. Lee, et al., R. Soc. Chem. Adv. 10, 37905 (2020).

    CAS  Google Scholar 

  38. P. Kumar, R. Agnihotri, K. L. Wasewar, et al., Desalin. Water Treatm. 50, 226 (2012).

    Article  CAS  Google Scholar 

  39. S. Gnanam and V. Rajendran, J. Alloys Compd. 735, 1854 (2018).

    Article  CAS  Google Scholar 

  40. I. Muneer, M. A. Farrukh, S. Javaid, et al., Superlatt. Microstruct. 77, 256 (2015).

    Article  CAS  Google Scholar 

  41. S. Yang, H. Gao, Y. Wang, et al., Mater. Res. Bull. 48, 37 (2013).

    Article  Google Scholar 

  42. A. T. M. Anishur Rahman, K. Vasilev, and P. Majewski, J. Colloid Interface Sci. 354, 592 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. E. Aliyev, V. Filiz, M. M. Khan, et al., Nanomaterials 9, 1180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Thakur and N. Karak, Carbon 50, 5331 (2012).

    Article  CAS  Google Scholar 

  45. P. Chand, S. Vaish, and P. Kumar, Phys. B (Amsterdam, Neth.) 524, 53 (2017).

  46. F. Anwar and M. A. Farrukh, Asian J. Chem. 27, 3571 (2015).

    Article  CAS  Google Scholar 

  47. M. A. Farrukh, K. M. Butt, K.-K. Chong, and W. S. Chang, J. Saudi Chem. Soc. 23, 561 (2018).

    Article  Google Scholar 

  48. J. Chen, B. Yao, C. Li, and G. Shi, Carbon 64, 225 (2013).

    Article  CAS  Google Scholar 

  49. Z. Fan, K. Wang, T. Wei, et al., Carbon 48, 1686 (2010).

    Article  CAS  Google Scholar 

  50. D. Xu, Y. Zhang, D. Zhang, and S. Yang, Cryst. Eng. Commun. 17, 1106 (2015).

    Article  CAS  Google Scholar 

  51. I. Ilyas, I. Bashir, and M. A. Farrukh, Russ. J. Phys. Chem. A 95, 1023 (2021).

    Article  CAS  Google Scholar 

  52. M. Ahmadi, M. S. Seyed Dorraji, M. H. Rasoulifard, and A. R. Amani-Ghadim, Sep. Purif. Technol. 228, 1 (2019).

    Article  Google Scholar 

  53. A. R. Rajan, A. Rajan, A. John, et al., Ceram. Int. 45, 21947 (2019).

    Article  CAS  Google Scholar 

  54. A. Ishtiaq, M. A. Farrukh, A. U. Rehman, et al., J. Chin. Chem. Soc. 69, 269 (2022).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to FCCU for financial support to complete this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DECLARATION OF INTERESTS

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, S., Farrukh, M.A. & Chong, KK. Facile Synthesis of Gd2O3/rGO Nanocomposite: Optical, Thermal, Morphological, Structural, and Catalytic Studies. Russ. J. Phys. Chem. 97, 722–734 (2023). https://doi.org/10.1134/S0036024423040283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423040283

Keywords:

Navigation