Log in

An Aromaticity Study of Localized and Non-Localized Orbitals in \(B_{3}^{{n \mp ,0}}\), \(B_{4}^{{n \mp ,0}}\), \(B_{5}^{{n \mp ,0}}\), \(B_{6}^{{n \mp ,0}}\), and \(B_{7}^{{n \mp ,0}}\) (n = 0, 1, 2) Rings

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Several ions of \(B_{n}^{{ \mp ,0}}\) rings in viewpoint of diatropic situation (aromatic) and also paratropic position (anti-aromatic) have been studied. By this work, it has been exhibited that some of these ion rings presented planar and some others exhibit a quasi-planar structures, due to Jahn–Teller and pseudo Jahn–Teller effects. Via this effort, we demonstrated that the global aromaticity or global anti-aromaticity can be assigned on the 4n + 2 (or 4n) electron counting rule for either π- or σ-electrons in the planar structures. In addition, the structures of these ions have been discussed computationally and confirmed via comparisons of experimental photoelectron spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. E. Steiner and P. W. Fowler, J. Phys. Chem. A 105, 9553 (2001)

    Article  CAS  Google Scholar 

  2. E. Steiner, P. W. Fowler, and R. W. A. Havenith, J. Phys. Chem. A 106, 7048 (2002)

    Article  CAS  Google Scholar 

  3. M. Monajjemi and N. T. Mohammadian, J. Comput. Theor. Nanosci. 12, 4895 (2015).

    Article  CAS  Google Scholar 

  4. R. J. F. Berger and A. Viel, Z. Naturforsch. 75, 327 (2020).

  5. Z. Chen, C. S. Wannere, C. Corminboeuf, et al., Chem. Rev. 106, 3842 (2005).

    Article  Google Scholar 

  6. Z.-X. Wang, P. v. R. Schleyer, Science (Washington, DC, U. S.) 292, 2465 (2001).

    Article  CAS  Google Scholar 

  7. H. Tanaka, S. Neukermans, E. Janssens, et al., J. Am. Chem. Soc. 125, 2863 (2003).

    Google Scholar 

  8. E. D. Jemmis and E. G. Jayasree, Acc. Chem. Res. 36, 816 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. J. Juselius, M. Straka, and D. Sundholm, J. Phys. Chem. A 105, 9939 (2001).

    Article  CAS  Google Scholar 

  10. Y.-C. Lin, D. Sundholm, J. Juselius, et al., J. Phys. Chem. A 110, 4244 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. C.-G. Zhan, F. Zheng, and D. A. Dixon, J. Am. Chem. Soc. 124, 147 (2002).

    Google Scholar 

  12. J. C. Santos, J. Andres, A. Aizman, and P. Fuentealba, J. Chem. Theory Comput. 1, 83 (2005).

    Article  PubMed  Google Scholar 

  13. A. Datta and S. K. Pati, J. Phys. Chem. A 108, 9527 (2004).

    Article  CAS  Google Scholar 

  14. R. W. A. Havenith, P. W. Fowler, E. Steiner, et al., Phys. Chem. Chem. Phys. 6, 285 (2004).

    Article  CAS  Google Scholar 

  15. X. B. Hu, H. R. Li, W. C. Liang, and S. J. Han, Chem. Phys. Lett. 397, 180 (2004).

    Article  CAS  Google Scholar 

  16. X. Hu, H. Li, W. Liang, and S. Han, Chem. Phys. Lett. 402, 539 (2005).

    Article  CAS  Google Scholar 

  17. X. B. Hu, H. R. Li, W. C. Liang, and S. J. Han, New J. Chem. 29, 1295 (2005).

    Article  CAS  Google Scholar 

  18. F.-F. Wang, Z.-R. Li, D. Wu, et al., Chem. Phys. Chem. 7, 1136 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. H. J. Zhai, L. S. Wang, A. N. Alexandrova, et al., J. Phys. Chem. A 107, 9319 (2003).

    Article  CAS  Google Scholar 

  20. A. E. Kuznetsov and A. I. Boldyrev, Struct. Chem. 13, 141 (2002).

    Article  CAS  Google Scholar 

  21. H. J. Zhai, L. S. Wang, A. N. Alexandrova, and A. I. Boldyrev, J. Chem. Phys. 117, 7917 (2002).

    Article  CAS  Google Scholar 

  22. A. N. Alexandrova, A. I. Boldyrev, H.-J. Zhai, and L. S. Wang, J. Chem. Phys. 122, 054313 (2005).

  23. A. N. Alexandrova, E. Koyle, and A. I. Boldyrev, J. Mol. Mod. 12, 569 (2006).

    Article  CAS  Google Scholar 

  24. H.-J. Zhai, L. S. Wang, D. Yu. Zubarev, and A. I. Boldyrev, J. Phys. Chem. A 110, 1689 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. L. Hanley and S. L. Anderson, J. Phys. Chem. 91, 5161 (1987).

    Article  CAS  Google Scholar 

  26. L. Hanley and S. L. Anderson, J. Chem. Phys. 89, 2848 (1988).

    Article  CAS  Google Scholar 

  27. L. Hanley, J. L. Whitten, and S. L. Anderson, J. Phys. Chem. 92, 5803 (1988).

    Article  CAS  Google Scholar 

  28. A. N. Alexandrova, H.-J. Zhai, L. S. Wang, and A. I. Boldyrev, Inorg. Chem. 43, 3588 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. P. A. Hintz, S. A. Ruatta, and S. L. Anderson, J. Chem. Phys. 92, 292 (1990).

    Article  CAS  Google Scholar 

  30. P. A. Hintz, M. B. Sowa, S. A. Ruatta, and S. L. Anderson, J. Chem. Phys 94, 6446 (1991).

    Article  CAS  Google Scholar 

  31. M. B. Sowa-Resat, J. Smolanoff, A. Lapiki, and S. L. Anderson, J. Chem. Phys. 106, 9511 (1997).

    Article  CAS  Google Scholar 

  32. R. Kawai and J. H. Weare, J. Chem. Phys. 95, 1151 (1991).

    Article  CAS  Google Scholar 

  33. S. J. la Placa, P. A. Roland, and J. Wynne, J. Chem. Phys. Lett. 190, 163 (1992).

    Article  CAS  Google Scholar 

  34. S. A. Ruatta, P. A. Hintz, and S. L. Anderson, J. Chem. Phys. 94, 2833 (1991).

    Article  CAS  Google Scholar 

  35. J. M. L. Martin, J. P. François, and R. Gijbels, Chem. Phys. Lett. 189, 52 (1992).

    Article  Google Scholar 

  36. H. Kato, K. Yamashita, and K. Morokuma, Chem. Phys. Lett. 190, 361 (1992).

    Article  CAS  Google Scholar 

  37. P. A. Roland and J. J. Wynne, J. Chem. Phys. 99, 8599 (1993).

    Article  CAS  Google Scholar 

  38. H. Kato, K. Yamashita, and K. Morokuma, Bull. Chem. Soc. Jpn. 66, 3358 (1993).

    Article  CAS  Google Scholar 

  39. I. Boustani, Int. J. Quantum. Chem. 52, 1081 (1994).

    Article  CAS  Google Scholar 

  40. I. Boustani, Chem. Phys. Lett. 233, 273 (1995).

    Article  CAS  Google Scholar 

  41. I. Boustani, Phys. Rev. B 53, 16426 (1997).

    Article  Google Scholar 

  42. J. Aihara, H. Kanno, and T. Ishida, J. Am. Chem. Soc. 127, 13324 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Y. Yang, H. Yu, D. York, Q. Cui, and M. Elstner, J. Phys. Chem. A 111, 10861 (2007). https://doi.org/10.1021/jp074167r

    Article  CAS  PubMed  Google Scholar 

  44. B. Hourahine, B. Aradi, V. Blum, et al., J. Chem. Phys. 152, 124101 (2020).

  45. T. Yanai, D. P. Tew, and N. Chandy, Chem. Phys. Lett. 393, 51 (2004).

    Article  CAS  Google Scholar 

  46. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

    Article  CAS  Google Scholar 

  47. T. Lu and F. A. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  PubMed  Google Scholar 

  48. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  49. D. Strack, Phytochemistry 57, 144 (2001).https://doi.org/10.1016/S00319422(00)00503-3

  50. A. Ricca and C. W. Bauschlicher, Jr., Chem. Phys. 208, 233 (1996).

    Article  CAS  Google Scholar 

  51. M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).

    Article  CAS  Google Scholar 

  52. A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, et al., J. Phys. Chem. A 107, 1359 (2003).

    Article  CAS  Google Scholar 

  53. A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).

    Article  CAS  Google Scholar 

  54. A. Savin et al., Angew. Chem. Int. Ed. Engl. 32, 187 (1992).

    Article  Google Scholar 

  55. A. D. Becke, J. Mol. Struct.: THEOCHEM 527, 51 (2000).

    Article  Google Scholar 

  56. H. Jacobsen, Can. J. Chem. 86, 7 (2008). https://doi.org/10.1139/v08-052

    Article  Google Scholar 

  57. T. Lu and F. Chen, J. Mol. Graph. Model 38, 314 (2012).

    Article  PubMed  Google Scholar 

  58. T. Lu and F. A. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  PubMed  Google Scholar 

  59. A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, et al., J. Phys. Chem. A 107, 1359 (2003).

    Article  CAS  Google Scholar 

  60. H.-J. Zhai, L.-Sh. Wang, A. N. Alexandrova, A. I. Boldyrev, and V. G. Zakrzewski, J. Phys. Chem. A 107, 9319 (2003).

    Article  CAS  Google Scholar 

  61. Y. M. Harmick, R. J. van Zee, and W. Weltner, Jr., J. Chem. Phys. 96, 1767 (1992).

    Google Scholar 

  62. M. L. McKee, Z. X. Wang, and P. v. R. Schleyer, J. Am. Chem. Soc. 122, 4781 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Our common idea and preliminary discussion of this work refer to the duration of my sabbatical collaborating with professor J.E. Boggs (who passed away) in Institute for Theoretical Chemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas, United States that reminds me his memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Monajjemi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monajjemi, M., Rafiee, Y., Mollaamin, F. et al. An Aromaticity Study of Localized and Non-Localized Orbitals in \(B_{3}^{{n \mp ,0}}\), \(B_{4}^{{n \mp ,0}}\), \(B_{5}^{{n \mp ,0}}\), \(B_{6}^{{n \mp ,0}}\), and \(B_{7}^{{n \mp ,0}}\) (n = 0, 1, 2) Rings. Russ. J. Phys. Chem. 97, 151–167 (2023). https://doi.org/10.1134/S0036024423010223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423010223

Keywords:

Navigation