Log in

The Novel Catalytic Effect of TM-CmHm (TM = Cr, SC, Ti, V and m = 4, 5) Activation of Oxygen at the Cathode and N2H4 at the Anode in the Fuel Cell N2H4 –O2: A DFT Study

  • COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Platinum and the metals of similar row in pure or composite form are widely used as catalysts in the reaction of fuel cells. This work explored the catalytic efficiency of some organometallic compounds with the general formula TM-CmHm (TM = Cr, Sc, Ti, V and m = 4, 5) based on density function theory in hydrazine-oxygen fuel cells. PW91 method and base set 6-31G(d) were used to study the catalytic effect of the compounds mentioned in the activation of O2 on the cathode and N2H4 on the anode of the fuel cell. The results shown that O2 and N2H4 were activated in contact with the organometallic compounds to participate in the half fuel reaction. Bond length at O=O and N=N increased in response to the partial transfer of negative charge from organometallic compounds to their orbitals. The transition state calculations confirmed the feasibility of the reaction kinetically and thermodynamically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Arsalis, Renewable Sustainable Energy Rev. 105, 391 (2019).

    Article  Google Scholar 

  2. A. J. Slate, K. A. Whitehead, D. A. Brownson, et al., Renewable Sustainable Energy Rev. 101, 60 (2019).

    Article  CAS  Google Scholar 

  3. A. Arshad, H. M. Ali, A. Habib, et al., Therm. Sci. Eng. Prog. 9, 308 (2019).

    Article  Google Scholar 

  4. S. O. Ganiyu, C. A. Martínez-Huitle, and M. A. Rodrigo, Appl. Catal. B 270, 118857 (2020).

  5. L. **ng, W. Shi, H. Su, et al., Energy 177, 445 (2019).

    Article  CAS  Google Scholar 

  6. A. Piacentino, N. Duic, N. Markovska, et al., Energy 182, 254 (2019).

    Article  Google Scholar 

  7. T. Lehtola and A. Zahedi, Sustain. Energy Technol. Assess 35, 25 (2019).

    Google Scholar 

  8. Y. Shao, J. P. Dodelet, G. Wu, and P. Zelenay, Adv. Mater. 31, 1807615 (2019).

  9. A. M. Abdalla, S. Hossain, A. T. Azad, et al., Renewable Sustainable Energy Rev. 82, 353 (2018).

    Article  CAS  Google Scholar 

  10. E. Antolini, Appl. Catal. B 237, 491 (2018).

    Article  CAS  Google Scholar 

  11. V. C. Anitha, R. Zazpe, M. Krbal, et al., J. Catal. 365, 86 (2018).

    Article  CAS  Google Scholar 

  12. B. Zhu, D. **a, and R. Zou, Coord. Chem. Rev. 376, 430 (2018).

    Article  CAS  Google Scholar 

  13. V. Bon, Curr. Opin. Green Sustain. Chem. 4, 44 (2017).

    Article  Google Scholar 

  14. X. Liu and L. Dai, Nat. Rev. Mater. 1, 1 (2016).

    Google Scholar 

  15. J. C. Mah, A. Muchtar, M. R. Somalu, and M. J. Ghazali, Int. J. Hydrogen Energy 42, 9219 (2017).

    Article  CAS  Google Scholar 

  16. W. B. Jensen, Rubber. Chem. Technol. 55, 881 (1982).

    Article  CAS  Google Scholar 

  17. J. L. Dutton and P. J. Ragogna, Coord. Chem. Rev. 255, 1414 (2011).

    Article  CAS  Google Scholar 

  18. M. A. Beswick, J. S. Palmer, and D. S. Wright, Chem. Soc. Rev. 27, 225 (1982).

    Article  Google Scholar 

  19. E. Kirillov, J. Y. Saillard, and J. F. Carpentier, Coord. Chem. Rev. 249, 1221 (2005).

    Article  CAS  Google Scholar 

  20. W. Kaminsky, A. Funck, and H. Hähnsen, Dalton Trans. 41, 8803 (2019).

    Google Scholar 

  21. C. Janiak, Coord. Chem. Rev. 250, 66 (2006).

    Article  CAS  Google Scholar 

  22. M. Konkol and J. Okuda, Coord. Chem. Rev. 252, 1577 (2008).

    Article  CAS  Google Scholar 

  23. H. G. Alt, E. H. Licht, A. I. Licht, and K. J. Schneider, Coord. Chem. Rev. 250, 2 (2006).

    Article  CAS  Google Scholar 

  24. D. Mihailovic, in Molecular Magnets Recent Highlights (Springer, Vienna, 2003), p. 21.

    Google Scholar 

  25. V. C. Gibson and S. K. Spitzmesser, Chem. Rev. 103, 283 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Noei.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadmahmodi, Z., Noei, M., Aghaie, M. et al. The Novel Catalytic Effect of TM-CmHm (TM = Cr, SC, Ti, V and m = 4, 5) Activation of Oxygen at the Cathode and N2H4 at the Anode in the Fuel Cell N2H4 –O2: A DFT Study. Russ. J. Phys. Chem. 96, 3025–3030 (2022). https://doi.org/10.1134/S0036024422130295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422130295

Keywords:

Navigation