Log in

SERS and Catalytic Performance with Tailored Surface Engineering of Bimetallic Au@Ag Nano-Urchins

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Efficient bimetallic nanostructures, which show properties related to two sole metals, have empowered inventive applications in nanosciences and nanotechnology. Here, we construct bimetallic Au@Ag nano-urchins with controlled Au tips for Catalysis and SERS application. The proposed nano-urchins were synthesized via electrochemical and simple galvanic replacement reaction route. The construction of Ag nano-flowers via electrochemical deposition use as a shell and Au tips were grown via galvanic reaction route greatly enhanced SERS properties of crystal violet (CV) detection and stability of nanostructures. In a comparison of Ag flower-like structures, the catalysis properties of Au@Ag nano-urchins are extremely efficient in degrading p-nitrophenol. As a result, these bimetallic nano-urchins show great development in SERS substrate and efficient catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. He, Y. C. Wang, X. Wang, et al., Nat. Commun. 5, 4327 (2014).

    Article  CAS  Google Scholar 

  2. H. Wu, W. **, H. He, and Y. **, Nano Res. 5, 135 (2012).

    Article  CAS  Google Scholar 

  3. T. Shegai, S. Chen, V. D. Miljković, et al., Nat. Commun. 2, 481 (2011).

    Article  Google Scholar 

  4. J. R. Kitchin, J. K. Nørskov, M. A. Barteau, and J. G. Chen, Phys. Rev. Lett. 93, 156801 (2004).

  5. D. Wang, and Y. Li, Adv. Mater 23, 1044 (2011).

    Article  CAS  Google Scholar 

  6. N. M. Bedford, A. R. Showalter, T. J. Woehl, et al., ACS Nano 10, 8645 (2016).

    Article  CAS  Google Scholar 

  7. X. Liu, D. Wang, and Y. Li, Nano Today 7, 448 (2012).

    Article  CAS  Google Scholar 

  8. H. Zhang, T. Watanabe, M. Okumura, and M. Haruta, Nat. Mater. 11, 49 (2012).

    Article  Google Scholar 

  9. R. Liu, J. Guo, G. Ma, et al., ACS Appl. Mater. Interfaces 8, 16833 (2016).

    Article  CAS  Google Scholar 

  10. H. Fu, X. Yang, X. Jiang, and A. Yu, Langmuir 29, 7134 (2013).

    Article  CAS  Google Scholar 

  11. J. Huang, S. Vongehr, S. Tang, et al., Langmuir 25, 11890 (2009).

    Article  CAS  Google Scholar 

  12. J. Huang, S. Vongehr, S. Tang, et al., J. Phys. Chem. C 114, 15005 (2010).

    Article  CAS  Google Scholar 

  13. M. Y. Khaywah, S. Jradi, G. Louarn, et al., J. Phys. Chem. C 119, 26091 (2015).

    Article  CAS  Google Scholar 

  14. J. F. Huang, Y. H. Zhu, C. X. Liu, et al., Small 11, 5214 (2015).

    Article  CAS  Google Scholar 

  15. H. J. Yin, Z. Y. Chen, Y. M. Zhao, et al., Sci. Rep. 5, 14502 (2015).

    Article  Google Scholar 

  16. A. Gutés, R. Maboudian, and C. Carraro, Langmuir 28, 17846 (2012).

    Article  Google Scholar 

  17. Z. Yi, S. Chen, Y. Chen, et al., Thin Solid Films 520, 2701 (2012).

    Article  CAS  Google Scholar 

  18. T. N. Huan, S. Kim, P. V. Tuong, and H. Chung, RSC Adv. 4, 3929 (2014).

    Article  CAS  Google Scholar 

  19. K. Mao, Z. Zhou, S. Han, et al., Talanta 190, 263 (2018).

    Article  CAS  Google Scholar 

  20. J. Zhang, S. A. Winget, Y. Wu, et al., ACS Nano 10, 2607 (2016).

    Article  CAS  Google Scholar 

  21. B. Ankudze and T. T. Pakkanen, Appl. Surf. Sci. 453, 341 (2018).

    Article  CAS  Google Scholar 

  22. Z. Q. Cheng, Y. H. Qiu, Z. L. Li, et al., Opt. Mater. Express 9, 860 (2019).

    Article  CAS  Google Scholar 

  23. Z. Q. Cheng, Z. L. Li, X. Luo, et al., Appl. Phys. Lett. 114, 011901 (2019).

  24. H. B. Li, P. Liu, Y. Liang, et al., Nanoscale 4, 5082 (2012).

    Article  CAS  Google Scholar 

  25. H. X. Gu, L. Xue, Y. F. Zhang, et al., ACS Appl. Mater. Interfaces 7, 2931 (2015).

    Article  CAS  Google Scholar 

  26. Y. T. Kima, J. Schilling, S. L. Schweizera, and R. B. Wehrspohna, Appl. Surf. Sci. 410, 525 (2017).

    Article  Google Scholar 

  27. R. Liu, T. Sha, Q. Zhou, and B. Nie, Appl. Surf. Sci. 470, 1003 (2019).

    Article  CAS  Google Scholar 

  28. D. Huang, X. Bai, and L. Zheng, J. Phys. Chem. C 115, 14641 (2011).

    Article  CAS  Google Scholar 

  29. L. F. Zhang, S. L. Zhong, and A. W. Xu, Angew. Chem. Int. Ed. 52, 645 (2013).

    Article  Google Scholar 

  30. S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, J. Am. Chem. Soc. 130, 15589 (2008).

    Article  CAS  Google Scholar 

  31. B. Jacob, and P. Garik, Nature (London, U.K.) 343, 523 (1990).

    Article  Google Scholar 

  32. L. Zhen, C. Liang, Z. Lei, et al., Biomaterials 35, 4099 (2014).

    Article  Google Scholar 

  33. Z. Hua, X. Linlin, T. Yue, et al., Opt. Express 25, 29389 (2017).

    Article  Google Scholar 

  34. B. Meng, K. Fang, S. Jia, et al., Polymers 13, 516 (2021).

    Article  Google Scholar 

  35. J. Chen, B. Wiley, J. McLellan, et al., Nano Lett. 5, 2058 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Misbah Ullah Khan or Hayat Ullah.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Ullah, H., Honey, S. et al. SERS and Catalytic Performance with Tailored Surface Engineering of Bimetallic Au@Ag Nano-Urchins. Russ. J. Phys. Chem. 96, 2182–2188 (2022). https://doi.org/10.1134/S0036024422100120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422100120

Keywords:

Navigation